Définition : Calcul de la longueur Pour calculer la longueur du rectangle connaissant son aire et sa largeur, on divise l'aire par la largeur.
Calcul d'une longueur dans un rectangle
L'aire d'une plaque rectangulaire est de 3,375 m2, sa largeur mesure 45 cm. Quelle est sa longueur ? On doit convertir l'aire en cm2 : 3,375 m2 = 33 750 cm2. La longueur L en cm est alors solution de l'équation : 45 × L = 33 750.
Exemple de mesure de longueur
On note en résumé : largeur = 21 cm = 21 × 1 cm = 21 × 0,01 × 1 m = 0,21 m et longueur = 29,7 cm = 29,7 × 1 cm = 29,7 × 0,01 × 1 m = 0,297 m .
Méthode de calcul de superficie de forme Simple :
La surface est égale = longueur x largeur. 5 mètres de largeur x 5 mètres de longueur = 25 mètres carrés.
Calculer la longueur d'un segment dans un repère
A B = ( x B − x A ) 2 + ( y B − y A ) 2 . C'est le théorème de Pythagore qui donne ce résultat.
Pour obtenir 1 cm, il faut 10 mm. Pour obtenir 1 dm, il faut 100 mm. Pour obtenir 1 dm, il faut 10 cm. Voici quelques objets qui mesurent environ un décimètre : un stylo, un paquet de mouchoirs en papier, un moineau, une limace...
En géométrie plane, la largeur est la plus petite des deux mesures d'un rectangle ; l'autre mesure, de taille plus importante, est nommée longueur. Le symbole de la largeur est « l » (lettre « l » minuscule) ; le symbole de la longueur est « L » (lettre « L » majuscule).
Les mesures d'une surface ou d'un volume sont généralement données dans un ordre déterminé : longueur × largeur (× hauteur) ou largeur (× profondeur) × hauteur. Entre les mesures, on emploie la préposition sur, et non par.
Théorème de Pythagore : Si un triangle est rectangle, alors le carré de la longueur de l'hypoténuse est égal à la somme des carrés des longueurs des deux autres côtés. Avec les notations du triangle ABC rectangle en A, on a BC2=AB2+AC2.
Largeur (en mètre)
Calculer des mètres carrés est assez simple. Il suffit de multiplier la longueur par la largeur. Exemple : si une pièce fait 3 mètres de longeur et 2 métres de largeur, elle fait 6 mètres carrés (m2) de superficie habitable. Pensez à vérifier également la superficie Carrez.
Théorème de Pythagore :
Si un triangle est rectangle , alors le carré de la longueur de son hypoténuse est égal à la somme des carrés des longueurs des deux autres côtés. Exemple 1 : Soit le triangle ABC rectangle en A ([BC] est donc l'hypoténuse), alors BC²=AC²+BA².
Quelle est l' échelle du plan ? On veut savoir combien 1 cm sur le plan représente de cm dans la réalité (échelle de réduction). Si 12 cm représentent 300 m, soit 30 000 cm, alors 1 cm représente 30 000 cm ÷ 12 cm, soit 2 500 cm.
Théorème de Pythagore : Dans un triangle ABC rectangle en A, on a BC2=AB2+AC2. On peut réécrire cette égalité en AB2=BC2−AC2 pour déterminer la longueur AB ou en AC2=BC2−AB2 pour déterminer la longueur AC.
largeur = demi-périmètre − longueur.
En utilisant le théorème de Pythagore : Si un triangle est rectangle, alors le carré de l'hypoténuse est égal à la somme des carrés des côtés de l'angle droit. Si ABC est un triangle rectangle en A, alors BC² = AB² + AC².
D'après le théorème de Thalès, on a AB AM = AC AN = BC MN , soit 3 7 = AC 4 = BC MN . On utilise la propriété des produits en croix pour calculer la longueur demandée. Calcul de AC : 7 × AC = 3 × 4 soit AC = 3 × 4 7 = 12 7 donc AC = 12 7 cm. Exemple 2 : Sur la figure ci-contre, les droites (CD) et (HT) sont parallèles.
Il s'est servi de cette observation pour construire un triangle rectangle tridimensionnel dont les deux côtés égaux se rejoignent à angle droit avant de déduire sa célèbre équation : « le carré de l'hypoténuse est égal à la somme des carrés de la catheti » ou simplement « a² + b² = c² », comme on le dit aujourd'hui.
Si AB² = AC² + BC² alors le triangle ABC est rectangle en C. Si AB² n'est pas égal à AC² + BC² alors le triangle n'est pas rectangle en C. En effet, si le carré de la longueur du plus grand côté d'un triangle n'est pas égal à la somme des carrés des longueurs des deux autres côtés alors ce triangle n'est pas rectangle.
Théorème de Pythagore :
Si un triangle est rectangle , alors le carré de la longueur de son hypoténuse est égal à la somme des carrés des longueurs des deux autres côtés. Exemple 1 : Soit le triangle ABC rectangle en A ([BC] est donc l'hypoténuse), alors BC²=AC²+BA².
Pour calculer la longueur du rectangle connaissant son aire et sa largeur, on divise l'aire par la largeur.
On appelle « échelle » le coefficient de proportionnalité qui permet de passer des distances réelles aux distances sur le plan. Exemple : Sur une carte on peut lire échelle = 1 : 25 000 . Cela signifie que 1 cm sur la carte correspond à 25 000 cm (250 m) dans la réalité. Il s'agit d'une réduction car l'échelle < 1.
Il s'agit de triangles rectangles dont les côtés de l'angle droit ont pour mesures a et b. Applique la formule du calcul de l'aire d'un triangle rectangle : aire = (a × b) ÷ 2. Commence par calculer 2 × aire. C'est le résultat de a × b.
Mètre ruban et mètre pliant
Le mètre ruban et le mètre pliant sont les outils les plus élémentaires pour mesurer une pièce. Ils te permettent de mesurer la longueur, la largeur et la hauteur d'une pièce. Ils sont faciles à utiliser et disponibles en différentes longueurs.
Pour calculer la longueur du rectangle à partir du périmètre, on recherche d'abord le demi-périmètre puis on soustrait la largeur. L = Dp-l.
Les longueurs sont généralement mesurées à l'aide de l'unité mètre (m), de ses multiples et ses sous-multiples : Le kilomètre (km) est égal à 1 000 mètres. L'hectomètre (hm) est égal à 100 mètres. Le décamètre (dam) est égal à 10 mètres.