Calcul d'une longueur dans un rectangle L'aire d'une plaque rectangulaire est de 3,375 m2, sa largeur mesure 45 cm. Quelle est sa longueur ? On doit convertir l'aire en cm2 : 3,375 m2 = 33 750 cm2. La longueur L en cm est alors solution de l'équation : 45 × L = 33 750.
Pour calculer la longueur du rectangle à partir du périmètre, on recherche d'abord le demi-périmètre puis on soustrait la largeur. L = Dp-l.
Exemple de mesure de longueur
On note en résumé : largeur = 21 cm = 21 × 1 cm = 21 × 0,01 × 1 m = 0,21 m et longueur = 29,7 cm = 29,7 × 1 cm = 29,7 × 0,01 × 1 m = 0,297 m .
On connaît la longueur L et le périmètre P d'un rectangle. Pour calculer sa largeur l : on calcule le demi-périmètre (P ÷ 2), puis on soustrait la longueur L au demi-périmètre.
Les longueurs sont généralement mesurées à l'aide de l'unité mètre (m), de ses multiples et ses sous-multiples : Le kilomètre (km) est égal à 1 000 mètres. L'hectomètre (hm) est égal à 100 mètres. Le décamètre (dam) est égal à 10 mètres.
Pour obtenir 1 cm, il faut 10 mm. Pour obtenir 1 dm, il faut 100 mm. Pour obtenir 1 dm, il faut 10 cm. Voici quelques objets qui mesurent environ un décimètre : un stylo, un paquet de mouchoirs en papier, un moineau, une limace...
En géométrie plane, la largeur est la plus petite des deux mesures d'un rectangle ; l'autre mesure, de taille plus importante, est nommée longueur. Le symbole de la largeur est « l » (lettre « l » minuscule) ; le symbole de la longueur est « L » (lettre « L » majuscule).
Calcul d'une longueur dans un rectangle
L'aire d'une plaque rectangulaire est de 3,375 m2, sa largeur mesure 45 cm. Quelle est sa longueur ? On doit convertir l'aire en cm2 : 3,375 m2 = 33 750 cm2. La longueur L en cm est alors solution de l'équation : 45 × L = 33 750.
, vous devez soustraire la longueur du rectangle à chaque côté de l'équation puis diviser les nombres obtenus par 2. Écrivez le résultat. N'oubliez pas l'unité de mesure. Par exemple, un rectangle avec un périmètre de 22 cm et une longueur de 8 cm aurait une largeur de 3 cm.
Théorème de Pythagore :
Si un triangle est rectangle , alors le carré de la longueur de son hypoténuse est égal à la somme des carrés des longueurs des deux autres côtés. Exemple 1 : Soit le triangle ABC rectangle en A ([BC] est donc l'hypoténuse), alors BC²=AC²+BA².
Dans le cas d'un terrain rectangulaire, il faut mesurer sa longueur et sa largeur, puis les multiplier.
Les côtés d'un rectangle étant deux à deux de même longueur a et b, il est d'usage d'appeler dimensions du rectangle ces deux nombres. Le plus grand est la longueur du rectangle, le plus petit sa largeur. Un rectangle de côtés a et b possède une aire égale à a × b, et un périmètre de 2 × (a + b).
Les mesures d'une surface ou d'un volume sont généralement données dans un ordre déterminé : longueur × largeur (× hauteur) ou largeur (× profondeur) × hauteur. Entre les mesures, on emploie la préposition sur, et non par.
D'après le théorème de Thalès, on a AB AM = AC AN = BC MN , soit 3 7 = AC 4 = BC MN . On utilise la propriété des produits en croix pour calculer la longueur demandée. Calcul de AC : 7 × AC = 3 × 4 soit AC = 3 × 4 7 = 12 7 donc AC = 12 7 cm. Exemple 2 : Sur la figure ci-contre, les droites (CD) et (HT) sont parallèles.
Largeur (en mètre)
Calculer des mètres carrés est assez simple. Il suffit de multiplier la longueur par la largeur. Exemple : si une pièce fait 3 mètres de longeur et 2 métres de largeur, elle fait 6 mètres carrés (m2) de superficie habitable. Pensez à vérifier également la superficie Carrez.
En utilisant le théorème de Pythagore : Si un triangle est rectangle, alors le carré de l'hypoténuse est égal à la somme des carrés des côtés de l'angle droit. Si ABC est un triangle rectangle en A, alors BC² = AB² + AC².
Pour trouver le périmètre d'une figure, il faut mesurer la longueur de son contour. Ex. : un carré de 3 cm de côté a pour périmètre 4 × 3 = 12 cm (3 + 3 + 3 + 3). La formule pour calculer le périmètre d'un rectangle est (L + l) × 2, « longueur plus largeur fois 2 ».
1) La face latérale du cylindre est un rectangle. On commence par représenter cette face. Une des dimensions de ce rectangle correspond à la hauteur du cylindre soit 4 cm. L'autre dimension est égale au périmètre de la base (le disque), soit : 2 x π x r ≈ 2 x 3,14 x 2 ≈ 12,56 cm.
Méthode. Pour trouver les dimensions réelles, on multiplie les dimensions sur le plan par le dénominateur de l'échelle, puis on fait les conversions nécessaires. La formule de calcul est : Dimension réelle = Dimension sur le plan x Dénominateur de la fraction de l'échelle.
Théorème de Pythagore : Si un triangle est rectangle, alors le carré de la longueur de l'hypoténuse est égal à la somme des carrés des longueurs des deux autres côtés. Avec les notations du triangle ABC rectangle en A, on a BC2=AB2+AC2.
Le mètre, de symbole m, est l'unité officielle de mesure de longueur.
Les longueurs sont généralement mesurées à l'aide de l'unité mètre (m) et de ses multiples (ou sous-multiples) : Le kilomètre (km) est égal à 1000 mètres. L'hectomètre (hm) est égal à 100 mètres. Le décamètre (dam) est égal à 10 mètres.
Quand on veut mesurer la taille d'un objet, la plus grande taille qu'on peut lui mesurer est sa longueur. Pour un rectangle, la longueur est la taille du côté le plus grand.
une longueur (on parle la largeur du dos, la carrure), il a le "dos large" (il est musclé). et une profondeur (c'est en fait la largeur, l'épaisseur de la personne). La dimension de la longueur est toujours supérieure à celle de la largeur.