Dans le cas d'un triangle rectangle ABC rectangle en B, la tangente de l'angle A est égale à la longueur du côté opposé à l'angle A divisée par la longueur du côté adjacent à l'angle A, donc tan A = BC/BA.
Si f est une fonction dérivable sur un intervalle contenant un réel a, la tangente à la courbe représentative de f au point d'abscisse a a pour équation: y = f(a) + f′(a)(x - a) .
La tangente d'un angle aigu est égale au quotient de son sinus par son cosinus.
Alors n'oubliez pas SOH CAH TOA. Sin = Opposé / Hypoténuse (S.O.H.) Cos = Adjacent / Hypoténuse (C.A.H.) Tan = Opposé / Adjacent (T.O.A.)
tan(angle) = (côté opposé à l'angle) divisé par (côté adjacent à l'angle). et il faut savoir se repérer par rapport à un angle aigu pour distinguer côté adjacent et côté opposé à l'angle : Pour l'hypoténuse, quel que soit l'angle aigu considéré, c'est toujours le côté opposé à l'angle droit, et le plus grand côté.
On retiendra la petite astuce mnémotechnique : SOHCAHTOA. Elle permet de retenir les trois formules : sinus = opposé / hypoténuse, cosinus = adjacent / hypoténuse et tangente = opposé / adjacent. Le cosinus, le sinus et la tangente d'un angle n'ont pas d'unité.
On met la calculatrice en mode degré ; on tape 100, inv puis tan. L'affichage est : 89,4270613. Le résultat est : l'angle qui a pour tangente 100 mesure 89,4° (au dixième près par défaut).
Pour retenir les trois principales fonctions trigonométriques, vous pouvez mémoriser « soh cah toa » pour sinus = opposé sur hypoténuse (soh), cosinus = adjacent sur hypoténuse (cah)et tangente = opposé sur adjacent (toa).
Dans le cas d'un triangle rectangle ABC rectangle en B, le sinus de l'angle A est égal à la longueur du côté opposé à l'angle A divisée par la longueur de l'hypoténuse, donc sin A = BC/AC.
Le sinus de l'un est égal au cosinus de l'autre et réciproquement. On va démontrer que le sinus d'un angle est égal au cosinus de son complémentaire.
« La tangente d'un angle ; dans un triangle rectangle ; est égal au rapport de la longueur du coté opposé sur la longueur de coté adjacent. »
Si l'on cherche une tangente passant par un point donné Lorsque f est dérivable sur un intervalle I contenant le réel a, la tangente à la courbe représentative de f au point d'abscisse a admet pour équation : y= f'\left(a\right) \left(x-a\right) + f\left(a\right) .
La cotangente de l'angle d'un triangle rectangle est l'inverse de sa tangente. Elle est égale au quotient de la longueur du côté adjacent par la longueur du côté opposé.
La tangente est une fonction trigonométrique fondamentale. Elle est notée tan et était auparavant notée tg.
Cosinus  = Côté adjacent (noté a) / Hypoténuse (noté h).
Dans un triangle rectangle, le sinus d'un angle est égal au rapport de la longueur du côté opposé à cet angle sur la longueur de l'hypoténuse.
Le rapport « tangente », ou tangente, est tel que tangente de 𝜃 est égal à l'opposé sur l'adjacent. Dans cette question, tangente de 30 égale un sur racine de trois. Nous avons donc montré que la valeur de tangente de 30 degrés est égale à un sur racine de trois.
De même, la tangente s'utilise dans les triangles rectangles. Dans le cas d'un triangle rectangle ABC rectangle en B, la tangente de l'angle A est égale à la longueur du côté opposé à l'angle A divisée par la longueur du côté adjacent à l'angle A, donc tan A = BC/BA.
Si on connaît les angles A, B et C, on peut donc déduire l'angle D en soustrayant la somme des 3 autres à 360, soit D = 360 - (A + B + C). Le calcul des angles d'un rectangle ABCD est très simple dans la mesure où chacun de ses angles est droit, soit égal à 90°.
L'astronome grec Hipparque est considéré par beaucoup comme le père de la trigonométrie. Au cours de sa vie, aux alentours de l'an 120 av. J. -C., il crée une table de cordes tirées du centre d'un cercle qui forment des angles dont il tire des formules trigonométriques.
L'équation de la tangente cherchée passant par B, son équation est de la forme mx - y + yB - mxB, soit mx - y + 5/3 - 3m = 0. Cas de cercles sécants ou tangents de rayons distincts : En cas de cercles sécants, il ne reste que deux tangentes "extérieures" dont l'approche est la même que dans le cas non sécants.
Pour tracer la droite tangente il faut un deuxième point. Depuis A, avancer d'une unité horizontalement, puis vers le haut si f ' > 0 (ou vers le bas si f ' < 0) d'autant d'unités que la valeur de f ' . Si f ' = 0 la tangente est horizontale.
Pour les tangentes parallèle à une droite d'équation y=ax+b, c'est résoudre f'(x)=a car la tangente et la droite doivent avoir le même coefficient directeur.
La notion de tangente permet d'effectuer des approximations : pour la résolution de certains problèmes qui demandent de connaître le comportement de la courbe au voisinage d'un point, on peut assimiler celle-ci à sa tangente. Ceci explique la parenté entre la notion de tangente et le calcul différentiel.