La formule pour calculer l'aire d'un rectangle est L × l, « longueur fois largeur ». Ex. : un rectangle de longueur 8 m et de largeur 5 m a pour aire 8 × 5 = 40 m2.
Pour calculer l'aire d'un triangle quelconque, on multiplie la base par la hauteur puis on divise par 2.
L'aire d'une base
Il est possible de connaitre l'aire de ces bases en utilisant la formule d'aire associée à la figure plane. Par ailleurs, ces bases sont isométriques, ce qui veut dire qu'il suffit de trouver l'aire d'une base, identifiée par Ab, et de la multiplier par 2 pour obtenir l'aire des 2 bases.
Aire d'un parallélépipède rectangle
Soit L, l et h les trois dimensions d'un parallélépipède rectangle (ou pavé droit), l'aire totale A de ce solide (celle de ses six faces) est donnée par la formule : A = 2 × (L × l + L × h + l × h) ou A = 2Ll + 2Lh + 2lh.
Un pavé droit ou parallélépipède rectangle est un solide dont toutes les faces sont des rectangles. Les faces ABCD et EFGH sont opposées et parallèles (de même que ABHE et DCGF). Les faces ABCD et BCGH sont perpendiculaires.
On appelle a, b et h les trois dimensions d'un pavé droit et V son volume. Complète le tableau suivant. La formule du volume d'un pavé droit est : V = (a × b) × h.
Il s'agit de triangles rectangles dont les côtés de l'angle droit ont pour mesures a et b. Applique la formule du calcul de l'aire d'un triangle rectangle : aire = (a × b) ÷ 2. Commence par calculer 2 × aire.
La hauteur d'un triangle est une droite qui passe par un sommet et qui est perpendiculaire au côté opposé. Ce côté est alors appelé la base du triangle.
Donc l'aire du triangle ABC est donnée par : On a donc le résultat suivant : L'aire d'un triangle est égale au produit de la longueur d'un côté du triangle (base relative b) par sa hauteur h relative divisé par 2. Aire (ABC) = (base × hauteur) ÷ 2 = (b × h) ÷ 2.
Une façon est d'utiliser la formule pour calculer l'aire d'un triangle quelconque : A = 1/2 * base * hauteur. L'autre est d'utiliser la formule trigonométrique : A = 1/2 * a * b * sin(c). La formule que tu utiliseras dépendra des données présentées.
Aire = √p(p-a)(p-b)(p-c)
Où a, b et c sont les longueurs des côtés du rectangle et où p est la moitié du périmètre du triangle.
Comme on connaît les longueurs des trois côtés du triangle, on peut utiliser la formule de Héron pour déterminer son aire. Selon la formule de Héron, l'aire, 𝐴 , d'un triangle de côtés de longueurs 𝑎 , 𝑏 et 𝑐 est 𝐴 = √ 𝑑 ( 𝑑 − 𝑎 ) ( 𝑑 − 𝑏 ) ( 𝑑 − 𝑐 ) , où 𝑑 est le demi-périmètre du triangle.
Pour calculer l'aire de figures géométriques, il faut utiliser des formules. La formule de l'aire d'un triangle est : Aire d'un triangle = (Base × hauteur) : 2 soit : A = (B × h) : 2.
Si, au contraire, tu as l'aire du triangle ainsi que la longueur de sa base, la formule pour trouver la hauteur du triangle est la suivante : La hauteur est égale à 2 fois l'aire du triangle divisé par la base du triangle.
Définition : dans un triangle, la hauteur d'un côté est la droite qui est perpendiculaire au côté et qui passe par le sommet opposé. On dit aussi la hauteur issue d'un sommet.
Pour calculer la surface de base du parallélépipède rectangle, on multiplie sa longueur par sa largeur. Surface de base = Longueur x largeur. Surface des bases = Surface d'une base x 2 ou (Longueur + largeur) x 2.
Selon Pythagore, dans un triangle rectangle abc, c étant l'hypoténuse (le plus long côté), on a l'équation suivante : a2 + b2 = c2. C'est cette équation qui va nous permettre de trouver la hauteur de notre triangle !
Si, au contraire, tu as l'aire du triangle ainsi que la longueur de sa base, la formule pour trouver la hauteur du triangle est la suivante : La hauteur est égale à 2 fois l'aire du triangle divisé par la base du triangle.
Dans un triangle rectangle équilatéral, cela signifie que la base est égale à la moitié de la diagonale du carré inscrit dans le triangle. Cette diagonale mesure la moitié de la longueur de l'hypoténuse, donc la base mesure un tiers de l'hypoténuse. Par exemple, si l'hypoténuse mesure 6 cm, alors la base mesure 2 cm.
Comme il s'agit d'une pyramide régulière, sa base doit être un polygone régulier. Cela signifie qu'on doit avoir une base carrée. La valeur de 𝑥 = 8 que nous avons calculé est égal à la moitié de la longueur de l'un des côtés du carré. Par conséquent, la longueur du côté du carré à la base est 8 × 2 = 1 6 c m .
Par exemple, ∆ = p × a/2 , où ∆, est l'aire d'un polygone régulier dont p est le périmètre et a est l'apothème (la distance entre le centre du polygone et le milieu d'un côté).
La formule générale est toujours : V = B × H (volume = aire de la base × hauteur), que le prisme ou le cylindre soit droit ou pas.
Pour calculer le volume du parallélépipède rectangle, on multiplie les trois dimensions ( Longueur, largeur, hauteur) entre elles. Volume = Longueur x largeur x hauteur.
Calculer l'aire d'un triangle quelconque ou équilatéral
S = (AB x h) / 2 = (10 x 6) / 2 = 30 cm². En effet, AB peut aussi déterminer la longueur d'un rectangle dont h déterminerait sa largeur. De fait, multiplier AB par h, c'est calculer l'aire de ce rectangle.