Définitions. Le conditionnement d'une matrice carrée est le produit de la norme de cette matrice avec celle de la norme de son inverse. Si on utilise la norme 2 c'est aussi le rapport entre la plus grande et la plus petite des valeurs absolues des
Définition — Soit λ une valeur propre de u (resp. A) ; alors l'ensemble constitué des vecteurs propres pour la valeur propre λ et du vecteur nul est appelé le sous-espace propre de u (resp. A) associé à la valeur propre λ. Le sous-espace propre associé à une valeur propre λ est le noyau de u – λId.
De façon précise, si A est une matrice inversible, son conditionnement est K(A)=∥A∥×∥A−1∥ K ( A ) = ‖ A ‖ × ‖ A − 1 ‖ . Dans l'exemple précédent, on trouve K(A)=4488 K ( A ) = 4488 , où la norme choisie est la norme matricielle associée à la norme infinie sur R4 .
On appelle rayon spectral de A la quantité ρ(A) = max{|λ|; λ ∈ Cl, λ valeur propre de A}. 1 2 . (1.60) En particulier, si A est symétrique, A2 = ρ(A). AtAx · x.
Pour inverser une matrice à deux lignes et deux colonnes, il faut : échanger les deux coefficients diagonaux. changer le signe des deux autres. diviser tous les coefficients par le déterminant.
Matrice singulière
En algèbre linéaire, une matrice carrée est dite singulière si elle n'est pas inversible. Par conséquent, un système d'équations représenté par une matrice singulière n'admet pas de solution unique, car on ne peut pas l'inverser. Aussi, le déterminant de la matrice est nul.
Imaginons que l'on note C la matrice A x B : C = A x B. Le coefficient ci,j de la matrice C sera calculé en multipliant le ième ligne de la matrice de gauche avec la jème colonne de la matrice de droite. On multiplie tout simplement terme à terme chaque coefficient de la ligne et de la colonne.
Définition 1 Une matrice m×n est un tableau de nombres à m lignes et n colonnes. Les nombres qui composent la matrice sont appelés les éléments de la matrice (ou aussi les coefficients). Une matrice à m lignes et n colonnes est dite matrice d'ordre (m, n) ou de dimension m × n.
Pour diagonaliser une matrice, une méthode de diagonalisation consiste à calculer ses vecteurs propres et ses valeurs propres. La matrice diagonale D est composée des valeurs propres. La matrice inversible P est composée des vecteurs propres dans le même ordre de colonnes que les valeurs propres associées.
Comment calculer la matrice des cofacteurs ? La comatrice ( matrice des cofacteurs ) d'une matrice carrée M est notée Cof(M) C o f ( M ) . Pour chaque élément de la matrice, calculer le déterminant de la sous-matrice SM associée (ce déterminant est noté Det(SM) Det ( S M ) ou |SM| et est aussi appelé mineur.
Additionnez les trois cofacteurs.
Trois cofacteurs, un pour chaque coefficient d'une seule ligne (ou colonne), que vous additionnez et vous aurez le déterminant de la matrice 3 x 3.
Une matrice réelle dont toutes les colonnes sont orthogonales deux à deux est inversible si et seulement si elle n'a aucune colonne nulle. Un produit de deux matrices carrées est inversible si et seulement si les deux matrices en facteur le sont aussi.
Calculer la norme d'un vecteur du plan ou de l'espace, défini respectivement par les coordonnées (x,y) ou (x, y, z). La norme du vecteur est donnée dans un repère orthonormé par la formule suivante : √(x² + y²) ou √(x² + y² + z²).
La matrice d'un produit scalaire dans une base quelconque est toujours inversible. En effet, si AX = 0, alors `a fortiori t XAX = 0, c'est `a dire x2 = 0, et donc X = 0. ∀X,Y ∈ Mn1(R), t XAY = t XBY Alors A = B. Si A = Mate((|)), B = Mate((|)), P = Pe↦→f , alors B = t P AP .
Il y a trois classes de conditionnement : le conditionnement primaire, le conditionnement secondaire et le conditionnement tertiaire. Le primaire est celui qui englobe le produit. Il est représenté tel quel aux consommateurs finaux qui achètent l'article en question.
Dispute et altercation, sont des mots synonymes.
Avec une calculette
Soit vous utilisez la formule suivante: pour un article à 75 euros soldé à 30%, faites 75×0,3. Vous obtiendrez un résultat (dans ce cas-ci: 22,5 euros), qu'il faudra alors soustraire du montant initial (dans ce cas-ci: 75-22,5). Votre achat revient donc ici à 52,5 euros.
Le déterminant se calcule en multipliant les deux termes de la diagonales : a x d, puis les deux autres : b x c. On soustrait alors, ce qui donne det(A) = a x d – b x c.
Le déterminant d'une matrice diagonale ou triangulaire (supérieure ou inférieure) est égal au produit des termes de la diagonale principale. Comme pour les déterminants d'ordre 2, la valeur du déterminant est égale au produit des termes de la diagonale principale.
Comment calculer les mineurs d'une matrice ? Pour une matrice carrée d'ordre 2, trouver les mineurs c'est calculer la matrice des cofacteurs sans les coefficients. Pour les matrices de taille supérieure comme 3x3, calculer les déterminants de chaque sous-matrice.
Une matrice scalaire est une matrice diagonale (à coefficients dans un anneau) dont tous les coefficients diagonaux sont égaux, c'est-à-dire de la forme λIn où λ est un scalaire et In la matrice identité d'ordre n.
Pour déterminer/trouver les valeurs propres d'une matrice, calculer les racines de son polynôme caractéristique. Exemple : La matrice 2x2 (d'ordre 2) M=[1243] M = [ 1 2 4 3 ] a pour polynôme caractéristique P(M)=x2−4x−5=(x+1)(x−5) P ( M ) = x 2 − 4 x − 5 = ( x + 1 ) ( x − 5 ) .
Si on vous demande de vérifier qu'un λ donné est valeur propre de f (resp. de A), il suffit de résoudre l'équation (le système) f(x) = λx (resp. AX = λX) et de vérifier qu'il y a au-moins une solution autre que le vecteur nul.
Deux nombres sont inverses l' un de l' autre lorsque leur produit est égal à 1. Remarque : Seul 0 n' a pas d' inverse. D' après la règle des signes; deux nombres inverses sont toujours du même signe alors que deux nombres opposés et non nuls sont de signes contraires.
Un intérêt principal des matrices est qu'elles permettent d'écrire commodément les opérations habituelles de l'algèbre linéaire, avec une certaine canonicité.