Lorsque l'on connaît la valeur d'un cosinus, on peut déterminer la valeur du sinus correspondant sur un intervalle I donné grâce à la formule cos^2\left(x\right)+ sin^2\left(x\right) = 1.
Sin = Opposé / Hypoténuse (S.O.H.) Cos = Adjacent / Hypoténuse (C.A.H.)
En géométrie, le sinus d'un angle dans un triangle rectangle est le rapport entre la longueur du côté opposé à cet angle et la longueur de l'hypoténuse. La notion s'étend aussi à tout angle géométrique (compris entre 0 et 180°). Dans cette acception, le sinus est un nombre compris entre 0 et 1.
Dans un triangle rectangle, le cosinus d'un angle, noté « cos », est égal au rapport (quotient) de la longueur du côté adjacent à cet angle sur la longueur de l'hypoténuse.
Méthode On utilise la formule \cos ^{2}(x)+\sin ^{2}(x)=1 qui permet de relier le sinus et le cosinus d'un nombre. On résout l'équation associée. On choisit la bonne valeur en utilisant l'intervalle auquel appartient x.
Valeur exacte
La division 64,5 ÷ 15 se termine, on dit aussi qu'elle « tombe juste ». L'écriture décimale 4,3 est donc la valeur exacte du quotient. On peut écrire 64,5 ÷ 15 = 4,3.
Pour tracer un cycle d'une fonction cosinus, on débute à un maximum ou à un minimum, et on termine à la même hauteur. Le cycle est encadré d'un rectangle, délimité par la période et l'amplitude. Il est ensuite séparé en 4 parties égales. Chacune d'entre elles est délimitée par un point d'inflexion et un sommet.
Formule du cosinus
Dans un triangle rectangle, le cosinus d'un angle est le nombre égal à la longueur du côté adjacent divisée par la longueur de l'hypoténuse. Ci-dessous, le cosinus de 48° (cos(48) sur la calculatrice) est le nombre qui est égal à la longueur AC divisée par la longueur BC.
En géométrie, le calcul du cosinus d'un angle est utilisé en trigonométrie. Il peut servir par exemple à couper un gâteau en plusieurs parts parfaitement égales.
Trigonométrie Exemples
La valeur exacte de cos(45) est √22 . Le résultat peut être affiché en différentes formes.
Quand on cherche la mesure d'un des angles aigus d'un triangle et que l'on connaît la longueur de son côté opposé et de l'hypoténuse, on peut utiliser la formule du sinus pour calculer la mesure de l'autre angle aigu du triangle.
Dans le triangle initial, le côté 𝑎 est l'hypoténuse et le côté opposé à l'angle 𝐵 est le côté 𝑏 . Ainsi, le sinus de l'angle 𝐵 est égal à la longueur du côté opposé divisé par la longueur de l'hypoténuse.
Le sinus d'un angle aigu dans un triangle rectangle est le quotient de son côté opposé par l'hypoténuse.
Pour retenir les trois principales fonctions trigonométriques, vous pouvez mémoriser « soh cah toa » pour sinus = opposé sur hypoténuse (soh), cosinus = adjacent sur hypoténuse (cah)et tangente = opposé sur adjacent (toa).
cos(a-b) = cos(a) x cos(b) + sin(a) x sin(b). sin(a+b) = sin(a) x cos(b) + sin(b) x cos(a).
En effet, la fonction cosinus est périodique de période 2π, et on sait que sur l'intervalle [0,2π[, elle ne s'annule qu'aux points π/2 et 3π/2. Ainsi, pour tout x ∈ R, cos(x) = 0 si et seulement si x = π/2 + k×2π avec k ∈ Z OU x=3π/2 + l×2π avec l ∈ Z : on retrouve bien l'ensemble des multiples impairs de π/2.
Les fonctions sinus et cosinus n'ont pas de limite en l'infini.
Formules fondamentales :
tg x = sin x / cos x. cotg x = cos x / sin x.
Alors je peux tout simplement te dire : tu utilises le cosinus, le sinus ou la tangente quand tu as les données pour pouvoir les calculer (i.e soit le côté adjacent et l'hypoténuse, soit le côté opposé et l'hypoténuse, soit le côté adjacent et le côté opposé).
Toujours pour découvrir la mesure de notre angle A, prenons son hypoténuse AB, et le côté qui lui est opposé, ici BC. Le sinus sera alors égal à la longueur du côté opposé (on l'appellera o) divisé par celle de l'hypoténuse (h), soit Cosinus A = a ÷ h).
Remarque : On dit que la fonction cosinus est paire et que la fonction sinus est impaire. Définitions : Une fonction f est paire lorsque pour tout réel x de son ensemble de définition D, –x appartient à D et f (−x) = f (x).
On les note généralement avec les lettres "a" et "b" Formule : Le théorème de Pythagore énonce que la somme des carrés des longueurs des côtés adjacents est égale au carré de la longueur de l'hypoténuse. Cela se traduit mathématiquement par : a² + b² = c²
Quand θ est entre π et 3π/2, le sinus et le cosinus sont tous les deux négatifs. Et quand θ est dans le quatrième quadrant (en bas à droite) le cosinus est positif, et le sinus est négatif.
Valeur qui n'est pas approchée. Exemple : 1/3 est une valeur exacte.
La valeur exacte de sin(π12) sin ( π 12 ) est √6−√24 6 - 2 4 .