Définition : Si A est une matrice carrée (ai,j)1≤i,j≤n ( a i , j ) 1 ≤ i , j ≤ n , les mineurs principaux sont les déterminants des matrices tronquées (ai,j)1≤i,j≤k ( a i , j ) 1 ≤ i , j ≤ k , pour k allant de 1 à n .
Additionnez les trois cofacteurs.
Trois cofacteurs, un pour chaque coefficient d'une seule ligne (ou colonne), que vous additionnez et vous aurez le déterminant de la matrice 3 x 3. Pour notre exemple, cela donne : (-34) + (120) + (-12) = 74.
Si dans une matrice on ajoute à une ligne un multiple d'une autre ligne, le déterminant ne change pas. Si A est une matrice carrée d'ordre n, on a det(A)=det(At). Si A et B sont des matrices carrées d'ordre n, on a det(A⋅B)=det(A)⋅det(B).
Comment calculer la matrice des cofacteurs ? La comatrice ( matrice des cofacteurs ) d'une matrice carrée M est notée Cof(M) C o f ( M ) . Pour chaque élément de la matrice, calculer le déterminant de la sous-matrice SM associée (ce déterminant est noté Det(SM) Det ( S M ) ou |SM| et est aussi appelé mineur.
Déterminant : si n ≥ 2, det(comA) = (detA)n–1. Comatrice de la comatrice : si n ≥ 2, com(comA) = (detA)n–2 A. Si P(X) = det(A – X In) est le polynôme caractéristique de A et si Q est le polynôme défini par Q(X) = (P(0) – P(X))/X, alors : t(comA) = Q(A).
Le déterminant d'une matrice diagonale ou triangulaire (supérieure ou inférieure) est égal au produit des termes de la diagonale principale. Comme pour les déterminants d'ordre 2, la valeur du déterminant est égale au produit des termes de la diagonale principale.
Comment calculer les mineurs d'une matrice ? Pour une matrice carrée d'ordre 2, trouver les mineurs c'est calculer la matrice des cofacteurs sans les coefficients. Pour les matrices de taille supérieure comme 3x3, calculer les déterminants de chaque sous-matrice.
Pour déterminer/trouver les valeurs propres d'une matrice, calculer les racines de son polynôme caractéristique. Exemple : La matrice 2x2 (d'ordre 2) M=[1243] M = [ 1 2 4 3 ] a pour polynôme caractéristique P(M)=x2−4x−5=(x+1)(x−5) P ( M ) = x 2 − 4 x − 5 = ( x + 1 ) ( x − 5 ) .
Pour diagonaliser une matrice, une méthode de diagonalisation consiste à calculer ses vecteurs propres et ses valeurs propres. La matrice diagonale D est composée des valeurs propres. La matrice inversible P est composée des vecteurs propres dans le même ordre de colonnes que les valeurs propres associées.
La matrice M est diagonalisable si et seulement si la somme des multiplicités géométriques est égale à la taille de M. Or chaque multiplicité géométrique est toujours inférieure ou égale à la multiplicité algébrique correspondante.
1. On multiplie dans l'ordre, élément par élément, chaque élément d'une ligne de la première matrice A par chaque élément d'une colonne de la deuxième matrice B et ce, pour l'ensemble des éléments des deux matrices. 2. On effectue la somme de ces produits pour obtenir une nouvelle matrice.
Il suffit de rentrer chaque matrice de façon "naturelle" élément par élément, séparé d'un espace en effectuant un saut de ligne à chaque fin de ligne de la matrice. Vous pouvez entrer des entiers relatifs et des fractions de la forme -3/4 par exemple.
Méthode n°7 : Soit A une matrice carrée telle que : A = : A est inversible si et seulement si ad-bc ≠ 0. Méthode n°8 : Si A est une matrice diagonale dont tous les coefficients diagonaux sont non nuls, alors A est inversible.
Définition : Soit (→i,→j) une base orthonormée, Soient →u(x1y1) et →v(x2y2) deux vecteurs exprimés dans cette base, On appelle déterminant des deux vecteurs →u et →v le réel x1y2−y1x2.
La trace d'une matrice est l'addition des valeurs sur sa diagonale principale (en partant du coin en haut à gauche et en se décalant d'une case vers la droite et vers le bas).
Dé nition 2.3 (Déterminant de trois vecteurs) Soit u =x1i + y1j + z1k, v =x2i + y2j + z2k, w =x3i + y3j + z3k trois vecteurs de E.
Une sous-matrice est une matrice obtenue à partir d'une matrice en ne gardant que certaines lignes ou colonnes. est une sous-matrice de A constituée des lignes 1 et 2, et des colonnes 1,3 et 4. Nous pouvons dire aussi que cette sous-matrice est formée en supprimant la ligne 3 et la colonne 2.
1.1.
En dimension 2, le déterminant est très simple à calculer : det a b c d = ad − bc. C'est donc le produit des éléments sur la diagonale principale (en bleu) moins le produit des éléments sur l'autre diagonale (en orange).
Pour cela, dans le cas général, il faut d'abord calculer le discriminant Δ (delta), donné par la formule : Δ = b² - 4ac.
Le déterminant d'une matrice est égal à celui de sa transposée : si M ∈ Mn(R), alors det(M) = det(tM).
Le rang d'une matrice est égal au nombre de ses lignes sauf si l'une d'entre elles est combinaison linéaire des autres. On dira qu'une matrice est facile si l'une de ses colonnes a tous ses nombres nuls sauf exactement un.
Définition 1 Une matrice m×n est un tableau de nombres à m lignes et n colonnes. Les nombres qui composent la matrice sont appelés les éléments de la matrice (ou aussi les coefficients). Une matrice à m lignes et n colonnes est dite matrice d'ordre (m, n) ou de dimension m × n.