Pour calculer les coordonnées de la somme de deux vecteurs, on additionne les coordonnées de chacun des vecteurs. Pour calculer les coordonnées de la différence de deux vecteurs, on soustrait les coordonnées de chacun des vecteurs.
On considère le vecteur →u placé en n'importe quel point du plan. On place le vecteur →v à l'extrémité du vecteur →u. Les deux vecteurs forment alors les côtés d'un parallélogramme dont la diagonale partant de l'origine de →u et arrivant à l'extrémité de →v est le vecteur somme →u+→v. →u+→v=(ux+vx,uy+vy,uz+vz).
Pour indiquer les coordonnées du vecteur , on utilise la notation ou . On considère deux points A(xA ; yA) et B(xB ; yB). Le vecteur a pour coordonnées (xB – xA ; yB – yA ).
Définition d'un vecteur
Un vecteur est un objet mathématique que l'on représente graphiquement sous forme d'une flèche. En effet, un vecteur est défini par sa longueur (longueur du segment), sa direction (position, orientation de la flèche) et son sens (vers la droite ou la gauche).
Ainsi, l'expression qui permet de calculer la distance entre A et B est : d(A,B)=√(x2−x1)2+(y2−y1)2 d ( A , B ) = ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2 .
Un vecteur est défini par sa direction, son sens et sa longueur. La norme d'un vecteur correspond à sa longueur, c'est-à-dire à la distance qui sépare les deux points qui définissent le vecteur.
Le produit scalaire de deux vecteurs est égal au produit du module de l'un par la mesure algébrique de la projection de l'autre sur lui. II Produit vectoriel (de deux vecteurs !) norme : est l'aire du parallélogramme construit sur les représentants et des vecteurs et .
On distingue trois types de vecteurs: vecteurs libres, glissants et liés.
La distance se calcule le plus souvent à l'aide de la formule suivante : d = v × t dans laquelle « d » est la distance, « v », la vitesse et « t » le temps de parcours.
En géométrie, la norme est une extension de la valeur absolue des nombres aux vecteurs. Elle permet de mesurer la longueur commune à toutes les représentations d'un vecteur dans un espace affine, mais définit aussi une distance entre deux vecteurs invariante par translation et compatible avec la multiplication externe.
On peut la comprendre comme sa distance à zéro ; ou comme sa valeur quantitative, à laquelle le signe ajoute une idée de polarité ou de sens (comme le sens d'un vecteur). Par exemple, la valeur absolue de –4 est 4, et celle de +4 est 4.
Si l'on connaît l'angle B A C ^ \widehat{BAC} BAC, on peut calculer le produit scalaire A B → ⋅ A C → \overrightarrow{AB} \cdot \overrightarrow{AC} AB⋅AC en utilisant les longueurs A B AB AB et A C AC AC ainsi que le cosinus de l'angle B A C ^ \widehat{BAC} BAC(Voir Définition du produit scalaire.)
Tracer le représentant du vecteur
On trace une flèche issue du premier point jusqu'au deuxième point. On trace une flèche issue du premier point jusqu'au deuxième point. On nomme le représentant du nom du vecteur.
Le vecteur (−b;a) est un vecteur directeur de la droite d'équation ax+by+c=0. p. 214. Réciproquement, si le vecteur (−b;a) est un vecteur directeur de d, alors une équation cartésienne de d est ax+by+c=0 (avec c à déterminer).
Pour trouver le point milieu d'un segment, on peut utiliser l'équation suivante : Point milieu =(x1+x22,y1+y22) Point milieu = ( x 1 + x 2 2 , y 1 + y 2 2 ) , où (x1,y1) ( x 1 , y 1 ) et (x2,y2) ( x 2 , y 2 ) sont les coordonnées des deux extrémités d'un segment.
Pour déterminer l'abscisse du point d'intersection avec l'axe des abscisses, il faut trouver la valeur de x pour laquelle y = 0 y=0 y=0 . Pour déterminer l'ordonnée du point d'intersection avec l'axe des ordonnées, il faut trouver la valeur de y pour laquelle x = 0 x=0 x=0 .
y = a' x + b'.
Un repère du plan est défini par trois points non alignés (O,I,J). Le point O est l'origine du repère, la droite (OI) est appelée l'axe des abscisses, la droite (OJ) est appelée l'axe des ordonnées. On peut aussi définir un repère à l'aide des vecteurs. Si on pose le repère sera noté avec deux vecteurs non colinéaires.
Calculer la norme d'un vecteur du plan ou de l'espace, défini respectivement par les coordonnées (x,y) ou (x, y, z). La norme du vecteur est donnée dans un repère orthonormé par la formule suivante : √(x² + y²) ou √(x² + y² + z²).