L'événement "A ou B", noté A ∪ B, est réalisé lorsqu'au moins l'un des deux événements est réalisé. Théorème : Si A et B sont deux événements d'une expérience aléatoire, alors : P(A ∪ B) = P(A) + P(B) − P(A ∩ B)
Etant donnés deux évènements A et B de probabilités non nulles alors PA(B)=P(A∩B)P(A). Personnellement, je retiens cette formule en remarquant que les A sont "en bas" des deux côtés de l'égalité. Cette formule s'écrit aussi : P(A∩B)=P(A)×PA(B).
Pour calculer la probabilité d'un événement, vous pouvez simplement utiliser la formule générale de probabilité : P = n/N. Vous devez donc connaître le nombre d'issues favorables et le nombre total d'issues possibles.
La formule de probabilités conditionnelles, P ( A | B ) = P ( A ∩ B ) P ( B ) , peut également être utile. Si deux événements sont indépendants, P ( A ∩ B ) = P ( A ) P ( B ) . Pour un système complet d'événements, , la formule des probabilités totales s'écrit : P ( A ) = ∑ i ∈ I P ( A ∩ B i ) .
La probabilité de la réalisation consécutive des évènements indépendants A et B est donnée par P(A∩B)=P(A)×P(B). P ( A ∩ B ) = P ( A ) × P ( B ) .
P[A ∩ B] = P[A] × P[B].
La probabilité d'un événement est la somme des probabilités des événements élémentaires qui le réalisent. La somme des probabilités de tous les événements élémentaires d'une expérience aléatoire est égale à 1.
On utilise la formule P(B|A)=P(B∩A)P(A). P ( B | A ) = P ( B ∩ A ) P ( A ) .
On considère un événement comme étant impossible tout événement qui ne se réalisera jamais. De ce fait, sa probabilité est nulle. Toujours en prenant l'exemple du lancer d'un dé équilibré à 6 faces, l'événement A : "obtenir le nombre 8" est un événement impossible.
Pour un évènement, une probabilité est égale au rapport entre le nombre de résultats favorables et le nombre de résultats possibles de l'expérience aléatoire.
La probabilité qu'un événement 𝐵 se réalise sachant que l'événement 𝐴 s'est déjà réalisé est 𝑃 ( 𝐵 ∣ 𝐴 ) = 𝑃 ( 𝐴 ∩ 𝐵 ) 𝑃 ( 𝐴 ) , où 𝑃 ( 𝐵 ∣ 𝐴 ) est la probabilité que 𝐵 se réalise sachant que 𝐴 s'est réalisé, 𝑃 ( 𝐴 ∩ 𝐵 ) est la probabilité que 𝐴 et 𝐵 se réalisent (se produisent) simultanément et 𝑃 ( 𝐴 ) est la ...
Deux événements A et B sont dits indépendants (par rapport à P ) si P(A∩B)=P(A)P(B), P ( A ∩ B ) = P ( A ) P ( B ) , ce qui peut encore s'écrire, si P(A)≠0 P ( A ) ≠ 0 , P(B|A)=P(B) P ( B | A ) = P ( B ) .
On calcule la probabilité d'une issue en multipliant les probabilités inscrites sur les branches qui mènent à elle. Par exemple, la probabilité d'obtenir 3 fois pile est 0,43=0,064. La probabilité d'obtenir pile puis face puis pile est 0,4×0,6×0,4=0,096. La probabilité d'obtenir 3 fois face est 0,6×0,6×0,6=0,216.
La valeur de p pour : un test unilatéral à gauche est exprimé comme suit : valeur de p = P(ST st | H 0 est vrai) = cdf(ts) un test unilatéral à droite est exprimé comme suit : valeur de p = P(ST st | H 0 est vrai) = 1 - cdf(ts)
Le p est l'ordonnée à l'origine, il se calcule en remplaçant x et y , dans y = mx+p , par les coordonnées x et y d'un des points A ou B, c'est pareil. -Si tu préfères celles du point B, tu mettras yB = mxB + p.
Dans la théorie des ensembles, l'intersection est une opération ensembliste qui porte le même nom que son résultat, à savoir l'ensemble des éléments appartenant à la fois aux deux opérandes : l'intersection de deux ensembles A et B est l'ensemble, noté A ∩ B, dit « A inter B », qui contient tous les éléments ...
Notation. Comme sous-ensemble d'un ensemble, un évènement peut se noter en extension ou en compréhension. Dans le cas de l'expérience aléatoire qui consiste à lancer un dé honnête à 6 faces numérotées de 1 à 6, l'évènement « obtenir un nombre pair » comporte 3 résultats possibles : {2, 4, 6}.
La probabilité empirique d'un événement est calculée en comptant le nombre de fois où l'événement se produit et en divisant ce nombre par le nombre total de fois que cet événement aurait pu se produire.
Cas particulier des nombres
Par exemple : l'opposé de 7 est égal à –7 car 7 + (–7) = 0. l'opposé de -0,3 est 0,3 car –0,3 + 0,3 = 0.
Soient A et B deux événements non impossibles d'un univers donné. La connaissance de la probabilité d'un événement B et de la probabilité condition- nelle d'un événements A sachant B permet de retrouver la probabilité P(A ∩ B) de l'intersection de A et B avec la formule P(A ∩ B) = PB(A)P(B).
Les probabilités peuvent être exprimées en fractions, décimales et pourcentages. Par exemple, il peut être impossible qu'une chose se produise. On pourrait alors dire que la probabilité est de zéro. On peut aussi être absolument certain qu'une chose se produise.
On utilise la formule des probabilités totales pour calculer une probabilité p\left(F\right) lorsque la réalisation de F dépend de la réalisation d'autres événements.
La deuxième identité remarquable : (a-b)2 = a² – 2ab + b²