Nous connaissons la valeur de l'angle et la valeur de son côté adjacent, nous pouvons utiliser les relations suivantes : cos (angle) = côté adjacent / hypoténuse , afin de déterminer la valeur de l'hypoténuse.
Théorème de Pythagore: "Dans un triangle rectangle, le carré de la longueur de l'hypoténuse est égal à la somme des carrés des longueurs des 2 autres côtés".
Dans un triangle rectangle, le cosinus d'un angle, noté « cos », est égal au rapport (quotient) de la longueur du côté adjacent à cet angle sur la longueur de l'hypoténuse.
Dans le cas d'un triangle rectangle ABC rectangle en B, le cosinus de l'angle A est égal à la longueur du côté adjacent à l'angle A divisée par la longueur de l'hypoténuse, donc cos A = AB/AC.
Conclusion : Le théorème de Pythagore s'applique au triangle rectangle seulement et permet de calculer un côté de celui-ci lorsque l'on connaît les deux autres.
L'astronome et mathématicien grec Hipparque de Nicée (-190 ; -120) construisit les premières tables trigonométriques sous la forme de tables de cordes : elles faisaient correspondre à chaque valeur de l'angle au centre (avec une division du cercle en 360°), la longueur de la corde interceptée dans le cercle, pour un ...
On connaît RT, le côté opposé à l'angle \hat{S}, et on veut calculer la longueur RS du côté adjacent. On va donc utiliser la tangente|tangente de l'angle. tan \hat{S} = \frac{RT}{RS} ; d'où RS = 6 (arrondi à l'unité). On connaît le côté opposé à l'angle \hat{S} et on cherche le côté adjacent.
Pour n'importe quel autre angle, on fait pareil : la mesure de la longueur des segments, on divise ensuite à la main, et on a la valeur du sinus de l'angle. Le sinus de 45° (voir l'image) est égal à la division de la longueur du segment rouge (rayon du cercle) par la longueur du segment vert.
Si BC² = BA² + AC² , alors ABC est un triangle rectangle en A. Remarque : Notion de réciproque : On écrit le théorème de Pythagore avec les lettres définissant le triangle indépendamment des valeurs numériques.
Le côté le plus long est [BC] ; si le triangle était rectangle, ce côté serait l'hypoténuse. D'une part, on a BC² = 20² = 400. D'autre part, on a AC²+AB² = 16² +12² = 256+144 = 400. On constate que BC² =AC²+AB².
Comme indiqué précédemment, calculer l'hypoténuse du triangle isocèle équivaut à calculer la longueur de l'un des deux cathets (AC ou CB). Nous divisons la base AB par 2 et obtenons: AH = AB / 2 = 2 cm. En appliquant le théorème de Pythagore, nous avons: AC =? (AH² + CH²) =? (2² + 6²) =? 40 = 6,32 cm.
Ainsi donc, l'équation se présente simplifiée : a / sin(α) = c / 1 ou encore a / sin(α) = c. Trouvez l'hypoténuse en divisant la longueur du côté a par le sinus de l'angle α. Il faut opérer en deux temps : on calcule en premier sin(α), que l'on va inscrire, puis on divise la longueur a par ce résultat obtenu.
HYPOTÉNUSE, subst. fém. GÉOM. Côté opposé à l'angle droit dans un triangle rectangle.
Pour utiliser les formules de trigonométrie, il faut se situer dans un triangle rectangle. Ces trois rapports ne dépendent que de la mesure de l'angle considéré. Le cosinus et le sinus d'un angle aigu sont toujours compris entre 0 et 1.
Trigonométrie Exemples. La valeur exacte de sin(30°) sin ( 30 ° ) est 12 .
Trigonométrie Exemples. La valeur exacte de cos(30°) cos ( 30 ° ) est √32 .
Cest toujours le plus grand côté du triangle. Par exemple, dans le triangle ABC, l'hypoténuse est [AC]. Le côté opposé à un angle, dans un triangle rectangle, est le côté qui ne touche pas cet angle. Par exemple, dans le triangle AB, le côté opposé à l'angle  est [BC].
Formule du cosinus
Dans un triangle rectangle, le cosinus d'un angle est le nombre égal à la longueur du côté adjacent divisée par la longueur de l'hypoténuse. Ci-contre, le cosinus de 48° (cos(48) sur la calculatrice) est le nombre qui est égal à la longueur AC divisée par la longueur BC.
Si tu connais le cos (ou le sin ou la tan) et que tu refuses la calculatrice, tu peux prendre les tables trigonométriques (Bouvar et Ratinet par exemple) pour déterminer l'angle avec la précision désirée.
Si c désigne la longueur d'un côté d'un triangle et h la hauteur relative à ce côté, l'aire de ce triangle est égale à (c × h) ÷ 2.
Comme précisé en introduction, la trigonométrie permet de créer des relations entre les distances et les angles. Grâce aux définitions qui vont suivre, on va pouvoir tisser des rapport entre les angles et les longueurs des côtes qui forment cet angle dans le triangle rectangle.
Jacques OZANAM (1640 - 1718) dans son traité de trigo de 1697 parle encore de sinus de complément et dresse la table des sinus et tangente seulement. Le mot COSINUS est né dans le texte en France entre OZANAM-1697 et BELIDOR-1725.