Théorème de Pythagore : Si un triangle est rectangle, alors le carré de la longueur de l'hypoténuse est égal à la somme des carrés des longueurs des deux autres côtés. Avec les notations du triangle ABC rectangle en A, on a BC2=AB2+AC2.
Il s'est servi de cette observation pour construire un triangle rectangle tridimensionnel dont les deux côtés égaux se rejoignent à angle droit avant de déduire sa célèbre équation : « le carré de l'hypoténuse est égal à la somme des carrés de la catheti » ou simplement « a² + b² = c² », comme on le dit aujourd'hui.
Si un triangle est rectangle, alors le milieu de l'hypoténuse est équidistant des trois sommets. En utilisant le théorème de Pythagore : Si un triangle est rectangle, alors le carré de l'hypoténuse est égal à la somme des carrés des côtés de l'angle droit. Si ABC est un triangle rectangle en A, alors BC² = AB² + AC².
Théorème de Pythagore : Dans un triangle ABC rectangle en A, on a BC2=AB2+AC2. On peut réécrire cette égalité en AB2=BC2−AC2 pour déterminer la longueur AB ou en AC2=BC2−AB2 pour déterminer la longueur AC.
Le côté le plus long est [BC] ; si le triangle était rectangle, ce côté serait l'hypoténuse. D'une part, on a BC² = 20² = 400. D'autre part, on a AC²+AB² = 16² +12² = 256+144 = 400.
Théorème de Pythagore :
Si un triangle est rectangle , alors le carré de la longueur de son hypoténuse est égal à la somme des carrés des longueurs des deux autres côtés. Exemple 1 : Soit le triangle ABC rectangle en A ([BC] est donc l'hypoténuse), alors BC²=AC²+BA².
Théorème: Le carré de la longueur de l'hypoténuse est égal à la somme des carrés des longueurs des 2 autres côtés. Équation: x2 = 82 + 52.
Réponse et explication :
Lorsqu’on connaît les longueurs de deux côtés d’un triangle rectangle, nous trouvons la longueur du troisième côté du triangle à l’aide du théorème de Pythagore. Pour ce faire, nous insérons les longueurs de côté connues dans l'équation de Pythagore, a2 + b2 = c2, de manière appropriée, puis nous résolvons la variable restante .
Toujours pour découvrir la mesure de notre angle A, prenons son hypoténuse AB, et le côté qui lui est opposé, ici BC. Le sinus sera alors égal à la longueur du côté opposé (on l'appellera o) divisé par celle de l'hypoténuse (h), soit Cosinus A = a ÷ h).
Formule : Le théorème de Pythagore énonce que la somme des carrés des longueurs des côtés adjacents est égale au carré de la longueur de l'hypoténuse. Cela se traduit mathématiquement par : a² + b² = c²
Pythagore: Le carré de la longueur de l'hypoténuse est égal à la somme des carrés des longueurs des 2 autres côtés. Équation: 102 = x2 + 92. Si tu as besoin de plus d'explications pour la mise en équation, consulte la fiche ci-dessous.
Nous ne connaissons peut-être qu’un côté, mais nous connaissons aussi un angle. Par exemple, si le côté a = 15 et l'angle A = 41°, on peut utiliser un sinus et une tangente pour trouver l'hypoténuse et l'autre côté . Puisque sin A = a/c, nous savons que c = a/sin A = 15/sin 41. En utilisant une calculatrice, cela donne 15/0,6561 = 22,864.
Théorème de Pythagore :
Si un triangle est rectangle , alors le carré de la longueur de son hypoténuse est égal à la somme des carrés des longueurs des deux autres côtés. Exemple 1 : Soit le triangle ABC rectangle en A ([BC] est donc l'hypoténuse), alors BC²=AC²+BA².
Définition de hypoténuse nom féminin
Géométrie Le côté opposé à l'angle droit, dans un triangle rectangle. Le carré de l'hypoténuse est égal à la somme des carrés des deux autres côtés (théorème de Pythagore).
La réciproque du théorème de Pythagore
Si dans un triangle ABC, on a BC^2=AB^2+AC^2, alors le triangle ABC est rectangle en A.
La réciproque du théorème Pythagore dit que « si un triangle est rectangle, alors le carré de la plus grande longueur (l'hypoténuse) est égale à la somme des carrés des longueurs des deux autres côtés ». La réciproque de Pythagore permet donc de montrer si un triangle est rectangle.
Lorsque, dans un triangle quelconque, on connaît les longueurs a et b de deux côtés ainsi que l'angle adjacent à ces deux côtés, on peut calculer la longueur c du troisième côté en utilisant le théorème d'Al-Kashi. On considère le triangle ABC suivant tel que b = 2, c=4 et \widehat{A}= \dfrac{\pi}{4}.
Dans le cas d'un triangle rectangle ABC rectangle en B, le sinus de l'angle A est égal à la longueur du côté opposé à l'angle A divisée par la longueur de l'hypoténuse, donc sin A = BC/AC.
Par exemple, le cosinus est le rapport entre le côté adjacent à l'angle par rapport à l'hypoténuse. Le sinus est le rapport entre le côté opposé à l'angle par rapport à l'hypoténuse. Quant à la tangente, elle est le rapport entre la fonction sinus et cosinus.
Answer: The side opposite the right angle is the hypotenuse. The Pythagorean theorem is used to solve for the length of the hypotenuse. If a right triangle has legs measuring a and b with hypotenuse c, the Pythagorean theorem is a² + b² = c².
For a right triangle, you can use the Pythagorean theorem: c^2 = a^2 + b^2, where c is the length of the hypotenuse (the longest side) and a and b are the lengths of the other two sides.
Le côté adjacent est le côté non hypoténuse qui se trouve à côté d’un angle donné . Un triangle rectangle ABC où l'angle C est égal à quatre-vingt-dix degrés. À l’intérieur du triangle, une flèche pointe du point A vers le côté A C. Le côté AC est étiqueté adjacent.
Pour trouver l'hypoténuse, additionnez les carrés des autres côtés, puis prenez la racine carrée . Pour trouver un côté plus court, soustrayez les carrés des autres côtés, puis prenez la racine carrée.
Ainsi donc, l'équation se présente simplifiée : a / sin(α) = c / 1 ou encore a / sin(α) = c. Trouvez l'hypoténuse en divisant la longueur du côté a par le sinus de l'angle α. Il faut opérer en deux temps : on calcule en premier sin(α), que l'on va inscrire, puis on divise la longueur a par ce résultat obtenu.
Utiliser le théorème de Pythagore pour trouver la longueur de l'hypoténuse. Appliquer le théorème de Pythagore pour calculer le côté le plus long d'un triangle rectangle. c est le côté le plus long ; on le trouve toujours en face de l'angle droit. Lorsque nous calculons la longueur du côté le plus long, nous pouvons appliquer la formule a2 + b2 = c2 .