La cotangente de l'angle d'un triangle rectangle est l'inverse de sa tangente. Elle est égale au quotient de la longueur du côté adjacent par la longueur du côté opposé.
De même, la tangente s'utilise dans les triangles rectangles. Dans le cas d'un triangle rectangle ABC rectangle en B, la tangente de l'angle A est égale à la longueur du côté opposé à l'angle A divisée par la longueur du côté adjacent à l'angle A, donc tan A = BC/BA.
Pour convertir l'arctangente en degrés, multipliez le résultat par 180/PI( ) ou utilisez la fonction DEGRES.
On met la calculatrice en mode degré ; on tape 100, inv puis tan. L'affichage est : 89,4270613. Le résultat est : l'angle qui a pour tangente 100 mesure 89,4° (au dixième près par défaut). Remarque : la démarche est la même si on connaît un cosinus ou un sinus.
tg x = sin x / cos x. cotg x = cos x / sin x.
Pour retenir les trois principales fonctions trigonométriques, vous pouvez mémoriser « soh cah toa » pour sinus = opposé sur hypoténuse (soh), cosinus = adjacent sur hypoténuse (cah)et tangente = opposé sur adjacent (toa).
Formules de factorisation : cos(x)+cos(y)=2cos(x+y2)cos(x−y2)cos(x)−cos(y)=−2sin(x+y2)sin(x−y2)sin(x)+sin(y)=2sin(x+y2)cos(x−y2)sin(x)−sin(y)=2sin(x−y2)cos(x+y2).
Le sinus de l'angle est le rapport des longueurs du côté opposé à cet angle et de l'hypoténuse. Le cosinus de l'angle est le rapport des longueurs du côté adjacent à cet angle et de l'hypoténuse. La tangente de l'angle est le rapport des longueurs du côtés opposé et adjacent à cet angle et de l'hypoténuse.
Le sinus de l'angle droit donne Opposé / Hypoténuse soit Hypoténuse / Hypoténuse = 1. Et le cosinus de l'angle droit donne Adjacent / Hypoténuse soit nul / Hypoténuse = 0 . La tangente, quant à elle, n'est pas définie car cela conduirait a une division par zéro.
La fonction cosinus est une fonction mathématique paire d'un angle. Dans un triangle rectangle, le cosinus d'un angle est le rapport de la longueur du côté adjacent par la longueur de l'hypoténuse.
Nous pouvons calculer les rapports trigonométriques de cette façon : Sinus = Opposé/Hypoténuse ; Cosinus = Adjacent/Hypoténuse ; Tangente = Opposé/Adjacent.
Pour déterminer la valeur du sinus ou d'un cosinus d'un angle à l'aide de la calculatrice, il convient de mettre la calculatrice sur le bon mode (degré ou radian) puis d'utiliser les touches \textcolor{Red}{cos} et \textcolor{Red}{sin}. Calculer \cos\left(40°\right) à l'aide de la calculatrice.
Sin = Opposé / Hypoténuse (S.O.H.) Cos = Adjacent / Hypoténuse (C.A.H.) Tan = Opposé / Adjacent (T.O.A.)
Le côté opposé à un angle est celui qui est en face de cet angle.
On peut résumer ainsi chacune de ces formules trigonométriques : Cosinus(angle) = Adjacent ÷ Hypothénuse. Sinus(angle) = Opposé ÷ Hypothénuse. Tangente(angle) = Opposé ÷ Adjacent.
Dans le cas d'un triangle rectangle ABC rectangle en B, le sinus de l'angle A est égal à la longueur du côté opposé à l'angle A divisée par la longueur de l'hypoténuse, donc sin A = BC/AC.
En géométrie, le calcul du cosinus d'un angle est utilisé en trigonométrie. Il peut servir par exemple à couper un gâteau en plusieurs parts parfaitement égales.
En géométrie, le sinus d'un angle dans un triangle rectangle est le rapport entre la longueur du côté opposé à cet angle et la longueur de l'hypoténuse. La notion s'étend aussi à tout angle géométrique (compris entre 0 et 180°). Dans cette acception, le sinus est un nombre compris entre 0 et 1.
La trigonométrie a pour objectif de simplifier la résolution de problèmes géométriques. En effet, l'utilisation de formules trigonométriques permet de : Calculer la longueur d'un côté d'un triangle rectangle lorsqu'on connaît la longueur d'un côté et les mesures d'au moins 2 angles.
cosh(x) = ex + e−x 2 . La fonction sinus hyperbolique est la fonction sinh : R → R définie par sinh(x) = ex − e−x 2 . La fonction tangente hyperbolique est la fonction tanh : R → R définie par tanh(x) = sinh(x) cosh(x) = ex − e−x ex + e−x .
Exemple : Dans un triangle TRI rectangle en R, on connaît IT = 8 et IR = 4. On cherche l'angle de sommet T. IR est le côté opposé au sommet T et IT l'hypoténuse (côté opposé au sommet R). On utilise donc le sinus.
Les relations Arcsinus, Arccosinus et Arctangente permettent de calculer la valeur d'un angle aigu d'un triangle rectangle dont on connaît les côtés.
Pour transformer l'équation en fonction cosinus, on applique l'identité remarquable suivante : sinx=cos(x−π2).
L'astronome et mathématicien grec Hipparque de Nicée (-190 ; -120) construisit les premières tables trigonométriques sous la forme de tables de cordes : elles faisaient correspondre à chaque valeur de l'angle au centre (avec une division du cercle en 360°), la longueur de la corde interceptée dans le cercle, pour un ...
L'astronome grec Hipparque est considéré par beaucoup comme le père de la trigonométrie. Au cours de sa vie, aux alentours de l'an 120 av. J. -C., il crée une table de cordes tirées du centre d'un cercle qui forment des angles dont il tire des formules trigonométriques.