Pour trouver son abscisse, on trace une parallèle à l'axe des ordonnées ; on lit alors l'abscisse du point à l' intersection avec l'axe horizontal. Pour trouver son ordonnée, on trace une parallèle à l'axe des abscisses ; on lit alors l'ordonnée du point à l' intersection avec l'axe vertical.
coordonnées d'un point
Dans un repère du plan, on a besoin de deux nombres pour indiquer la position d'un point : ce sont ses coordonnées. La première coordonnée, l' abscisse, se lit sur l'axe horizontal (l'axe des abscisses) ; la seconde, l' ordonnée, se lit sur l'axe vertical (l'axe des ordonnées).
Fiches méthodes. Si on a une fonction et qu'on cherche les coordonnées d'un point de sa courbe représentative : on choisit une valeur de x et on calcule y = f(x) en remplaçant x dans l'expression f(x) donnée. On obtient ainsi les coordonnées ( x ; y = f(x) ) d'un point de la représentation graphique de la fonction f.
Détermination de l'ordonnée à l'origine : Il suffit de lire l'ordonnée du point d'intersection de la droite avec l'axe des ordonnées. L'équation est de la forme y = px + d. L'ordonnée à l'origine est 1. Donc d = 1.
L'axe horizontal d'un plan cartésien se nomme l'axe des abscisses, ou l'axe des x . Cet axe gradué est orienté de la gauche vers la droite dans le plan cartésien. On y indique la valeur de la variable indépendante dans une relation entre deux variables.
Un petit moyen mnémotechnique pour ne pas confondre abscisse et ordonnée: Ecrite en script, l'initiale de abscisse se prolonge sur l'horizontale. "Abscisse" désigne donc l'axe horizontal d'un repère. La boucle du o se prolonge verticalement, "ordonnée" désigne donc l'axe vertical d'un repère.
"Les abscisses des points d'intersection de C_f et C_g sont les solutions de l'équation f\left(x\right)=g\left(x\right)." Les abscisses des points d'intersection de C_f et C_g sont les solutions de l'équation f\left(x\right)=g\left(x\right). On résout donc cette équation.
Un repère cartésien est un système de référence qui permet de localiser et d'identifier des points dans un plan. Il se compose de deux axes : l'axe horizontal (ou axe des abscisses) et l'axe vertical (ou axe des ordonnées). Ces deux axes se croisent en un point appelé l'origine du repère !
En géométrie cartésienne, l'ordonnée à l'origine du graphe d'une fonction désigne la valeur de l'ordonnée y lorsque l'abscisse x vaut 0. En d'autres termes, c'est la valeur de l'ordonnée du point d'intersection entre la courbe de la fonction et la droite d'équation x = 0, aussi appelée axe des ordonnées.
L'ordonnée à l'origine ou la valeur initiale (b)
Dans un graphique, l'ordonnée à l'origine correspond au point d'intersection entre la droite et l'axe des ordonnées (l'axe y ).
Un repère de l'espace est constitué de 3 axes : celui des abscisses, celui des ordonnées et celui des cotes. Les coordonnées d'un point de l'espace sont constituées de 3 nombres : l'abscisse, l'ordonnée et la cote de ce point, lisibles sur les axes du même nom.
L'ordonnée du point d'abscisse 4 est -2. Question 4 : Quelles sont les abscisses des points dont l'ordonnée est 2 ? Il y a trois point dont l'ordonnée est 2 : le premier a pour abscisse -4, le deuxième 0 et le troisième 8.
ORDONNÉE, subst. fém. A. − Coordonnée verticale servant à définir la position d'un point soit avec l'abscisse en géométrie analytique à deux dimensions, soit avec l'abscisse et la cote dans un système à trois dimensions.
Le milieu d'un segment est le point situé à égale distance des deux extrémités. On peut trouver les coordonnées du milieu de 𝐴 𝐵 en divisant par deux chacune les distances horizontales et verticales entre 𝐴 et 𝐵 .
Le point O est l'origine du repère, la droite (OI) est appelée l'axe des abscisses, la droite (OJ) est appelée l'axe des ordonnées. On peut aussi définir un repère à l'aide des vecteurs. Si on pose le repère sera noté avec deux vecteurs non colinéaires. Dans ce cas est l'axe des abscisses et est l'axe des ordonnées.
Déterminez la pente avec deux points.
Utilisez l'un des points de l'équation y = mx + b. Insérez les coordonnées de l'un des points dans l'équation où m est la pente. Ensuite, résolvez pour b, qui est l'intersection de l'axe des ordonnées (Y) de la ligne qui relie les deux points.
Un repère orthogonal du plan est composé de deux droites graduées perpendiculaires et de même origine. L'une horizontale est appelée axe des abscisses et l'autre verticale est appelée axe des ordonnées.
Règle. On détermine la valeur de l'ordonnée à l'origine de la droite en calculant la valeur de y lorsque x=0. x = 0. On détermine la valeur de l'abscisse à l'origine de la droite en calculant la valeur de x lorsque y=0.
Lorsque l'équation de la droite est présentée sous la forme y = ax + b, l'ordonnée à l'origine est le b. On peut calculer l'abscisse à l'origine avec la formule x = -b/a.
L'ordonnée à l'origine du graphique d'une fonction f représentée dans un plan cartésien est l'ordonnée du point de coordonnées (0, f(0)), soit le point de rencontre du graphique avec l'axe des ordonnées.
Intersection d'une droite et d'un plan
Il est clair que l'intersection est obtenue en résolvant un système de 3 équations à 3 inconnues. Soit la droite D donnée par { u x + v y + w z = d u ′ x + v ′ y + w ′ z = d ′ et le plan P donné par { x = a + λ u 1 + μ u 2 y = b + λ v 1 + μ v 2 z = c + λ w 1 + μ w 2 .
La droite 𝑦 égale zéro étant l'axe des abscisses. On peut voir que notre courbe coupe l'axe des 𝑥 en deux points: en 𝑥 égale moins un et en 𝑥 égale trois. Et puisque ces deux points se trouvent sur l'axe des 𝑥, on sait que leurs ordonnées 𝑦 sont égales à zéro.
Nombre d'intersections
Trouver l'intersection des graphes de f et g revient à résoudre l'équation f (x) = g(x). On trouvera la valeur de l'abscisse x0 où les deux droites se croisent. Pour trouver l'ordonnée, il suffira de calculer y0 = f (x0). On aura ainsi trouvé le point P0(x0 ; y0).