p(A∩B)=p(A)×p(B).
On utilise la formule P(B|A)=P(B∩A)P(A). P ( B | A ) = P ( B ∩ A ) P ( A ) .
On appelle probabilité de "A sachant B" le nombre, noté pB(A) ou p(A/B) définie par : On en déduit que : p(A∩B) = p(B) × p(A/B) ; c'est la formule qui permet de calculer p(A?B) si l'on connait p(B) et p(A/B).
L'événement "A ou B", noté A ∪ B, est réalisé lorsqu'au moins l'un des deux événements est réalisé. Théorème : Si A et B sont deux événements d'une expérience aléatoire, alors : P(A ∪ B) = P(A) + P(B) − P(A ∩ B)
Pour calculer la probabilité d'un événement, vous pouvez simplement utiliser la formule générale de probabilité : P = n/N. Vous devez donc connaître le nombre d'issues favorables et le nombre total d'issues possibles.
En pratique, pour calculer une probabilité avec une loi binomiale, On repère bien les valeurs de n, p et k. On écrit la formule P(X=k)=(nk)×pk×(1−p)n−k avec les valeurs précédentes.
Le nombre de combinaisons des n éléments d'un ensemble E pris k à la fois est donné par la relation suivante : Ckn=n!k! (n−k)!
« La probabilité de l'événement B est égale à la somme des probabilités des trajets menant à B ».
P(A/B) désigne la probabilité que A se réalise sachant que B s'est réalisé.
Dans la théorie des ensembles, l'intersection est une opération ensembliste qui porte le même nom que son résultat, à savoir l'ensemble des éléments appartenant à la fois aux deux opérandes : l'intersection de deux ensembles A et B est l'ensemble, noté A ∩ B, dit « A inter B », qui contient tous les éléments ...
On utilise la formule des probabilités totales pour calculer une probabilité p\left(F\right) lorsque la réalisation de F dépend de la réalisation d'autres événements.
Son évènement contraire est « tirer la boule blanche ou la boule verte ». La somme de la probabilité d'un évènement A et de la probabilité de son contraire est égale à 1. On a donc P(A) + p( ) = 1.
La probabilité de la réalisation consécutive des évènements indépendants A et B est donnée par P(A∩B)=P(A)×P(B). P ( A ∩ B ) = P ( A ) × P ( B ) .
Définition : Probabilité conditionnelle
Sur un arbre de probabilité, elle peut être calculée en multipliant les probabilités le long des branches, la première représentant la probabilité de 𝐴 et la seconde branche représentant la probabilité de 𝐵 sachant que 𝐴 s'est réalisé, comme illustré ci-dessous.
On calcule la probabilité d'une issue en multipliant les probabilités inscrites sur les branches qui mènent à elle. Par exemple, la probabilité d'obtenir 3 fois pile est 0,43=0,064. La probabilité d'obtenir pile puis face puis pile est 0,4×0,6×0,4=0,096. La probabilité d'obtenir 3 fois face est 0,6×0,6×0,6=0,216.
Pour le construire, on part d'une origine que l'on nomme racine de l'arbre, puis on construit les branches qui mènent aux feuilles appelées nœuds, c'est-à-dire à tous les événements possibles. Sur chacune des branches on indique la probabilité de l'événement correspondant, on appelle cela le poids de la branche.
Pour un système complet d'événements, , la formule des probabilités totales s'écrit : P ( A ) = ∑ i ∈ I P ( A ∩ B i ) . Le théorème de Bayes, P ( A | B ) = P ( B | A ) P ( A ) P ( A ) , s'applique à de nombreuses situations de la vie réelle.
L'intersection est distributive sur l'union, c'est-à-dire que, pour des ensembles A, B et C quelconques, on a : A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C). L'union est distributive sur l'intersection, c'est-à-dire que, pour des ensembles A, B et C quelconques, on a : A ∪ (B ∩ C) = (A ∪B) ∩(A ∪ C).
Deux événements A et B sont dits indépendants (par rapport à P ) si P(A∩B)=P(A)P(B), P ( A ∩ B ) = P ( A ) P ( B ) , ce qui peut encore s'écrire, si P(A)≠0 P ( A ) ≠ 0 , P(B|A)=P(B) P ( B | A ) = P ( B ) .
Nombre de combinaisons = 10x10x10x10 = 10 000
Cela signifie qu'il existe 10 000 combinaisons possibles de 4 chiffres différents avec les chiffres de 0 à 9.
Un code comme un code d'entrée d'un hall d'immeuble, étant composé généralement de chiffres de 0 à 9 sur 4 positions, la réponse qu'on est tenté de donner est tout simplement 40000, car il faut saisir tous les codes de 0000 à 9999.
On utilise le schéma de Bernoulli lors d'une même expérience, indépendante, répétée plusieurs fois qui admet deux issues : le succès ou l'échec.
La loi hypergéométrique (loi d'une variable aléatoire lors d'un tirage sans remise) peut être approchée par la loi binomiale lorsque le nombre d'individus de la population est très grand devant le nombre d'individus étudiés. On peut alors également approcher la loi binomiale par une des deux lois précédentes.