On met la calculatrice en mode degré ; on tape sin puis 50. L'affichage est : 0,7660444431. Le résultat est : sin 50° = 0,766 (au millième près). Remarque : la démarche est la même pour calculer un cosinus ou une tangente.
La tangente
Encore une fois, la fonction « tan-1 » d'une calculatrice pourra convertir le résultat en degrés. On peut résumer ainsi chacune de ces formules trigonométriques : Cosinus(angle) = Adjacent ÷ Hypothénuse. Sinus(angle) = Opposé ÷ Hypothénuse.
Comment effectuer le calcul de l'angle ? L'angle de la pente (mesuré en degrés) sert à déterminer une inclinaison. Pour déterminer la valeur d'un angle, il faut prendre l'arc-tangente de la hauteur divisée par la largeur, le tout multiplié par 180/π pour obtenir la valeur en degré.
Calculer . Dans le triangle ABC, on connaît déjà deux angles. Leur somme est égale à : 40 + 80 = 120°. La somme des mesures des angles d'un triangle est égale à 180°, donc : = 180 – 120 = 60°.
Nous ne connaissons peut-être qu’un côté, mais nous connaissons aussi un angle. Par exemple, si le côté a = 15 et l'angle A = 41°, on peut utiliser un sinus et une tangente pour trouver l'hypoténuse et l'autre côté . Puisque sin A = a/c, nous savons que c = a/sin A = 15/sin 41. En utilisant une calculatrice, cela donne 15/0,6561 = 22,864.
Pour traçer un angle de 45°, il suffit de traçer une diagonale d'un carré. Un angle à 135° est égal à 90° + 45°, donc on traçe une diagonale d'un carré dans les sens opposé. Un triangle équilatéral à trois cotés égaux et trois angles à 60°.
Angle = Longueur de l'arc / Rayon = 3,14 / 1 = 3,14 radians = 180 degrés (Vérifiez la même chose avec le calculateur d'angle). Exemple 2 : Si le rayon d'un cercle est de 5 cm et qu'il a un arc dont la longueur est de 10,3 cm, alors trouvez l'angle en radians sous-tendu par l'arc.
Pour tracer les angles, on a besoin d'une règle et d'un compas. Pour tracer un angle de 135 °, il suffit de tracer un angle droit accolé à un angle de 45 °. Pour tracer un angle de 150 °, il suffit de tracer un angle droit accolé à un angle de 60 °.
Sin = Opposé / Hypoténuse (S.O.H.) Cos = Adjacent / Hypoténuse (C.A.H.) Tan = Opposé / Adjacent (T.O.A.)
Sinus = côté opposé / hypoténuse.
Pour les calculatrices de la marque Casio, on utilise les touches \textcolor{Red}{SHIFT} et \textcolor{Red}{cos}, ou \textcolor{Red}{SHIFT} et \textcolor{Red}{sin}. Sur certaines calculatrices de la marque TI, on obtient "sin-1" ou "cos-1" avec la touche \textcolor{Red}{trig}.
Pour retenir les trois principales fonctions trigonométriques, vous pouvez mémoriser « soh cah toa » pour sinus = opposé sur hypoténuse (soh), cosinus = adjacent sur hypoténuse (cah)et tangente = opposé sur adjacent (toa).
Le sinus de l'angle droit donne Opposé / Hypoténuse soit Hypoténuse / Hypoténuse = 1. Et le cosinus de l'angle droit donne Adjacent / Hypoténuse soit nul / Hypoténuse = 0 . La tangente, quant à elle, n'est pas définie car cela conduirait a une division par zéro.
Utiliser le théorème de Pythagore pour trouver la longueur de l'hypoténuse. Appliquer le théorème de Pythagore pour calculer le côté le plus long d'un triangle rectangle. c est le côté le plus long ; on le trouve toujours en face de l'angle droit. Lorsque nous calculons la longueur du côté le plus long, nous pouvons appliquer la formule a2 + b2 = c2 .
The following formula is used to convert an angle in degrees to length in feet. To calculate feet from degrees, divide the angle by 360, multiply by 2 times pi, then finally, multiply by the radius.
Un angle est une mesure formée lorsque deux rayons se rencontrent en un point commun (appelé Sommet). Les noms des angles de base sont angle aigu, angle droit, angle obtus, angle droit, angle réflexe et angle droit .
Calculer la longueur d'un segment dans un repère
A B = ( x B − x A ) 2 + ( y B − y A ) 2 . C'est le théorème de Pythagore qui donne ce résultat.
Placez 2 tiges droites sur 2 cotés de votre table aux coins arrondis. Mesurez la distance entre le début du fléchissement de la courbe jusqu'au croisement des 2 tiges. C'est le rayon.
De même, la tangente s'utilise dans les triangles rectangles. Dans le cas d'un triangle rectangle ABC rectangle en B, la tangente de l'angle A est égale à la longueur du côté opposé à l'angle A divisée par la longueur du côté adjacent à l'angle A, donc tan A = BC/BA.
Dans le cas d'un triangle rectangle ABC rectangle en B, le sinus de l'angle A est égal à la longueur du côté opposé à l'angle A divisée par la longueur de l'hypoténuse, donc sin A = BC/AC.
Tracé d'un angle de 75°
Un angle de 75° peut également s'obtenir, cette fois très précisément, par simple tracé au compas. La méthode est relativement simple : on commence par tracer un angle de 90°, puis sa bissectrice, pour obtenir un angle de 45°.