On place l'angle droit de l'équerre sur la droite. On trace la seconde droite. On prolonge la seconde droite avec la règle. Si une droite est perpendiculaire à plusieurs droites, alors celles-ci sont parallèles entre elles.
On note (d) // (d'). Le signe « // » signifie parallèle. La distance entre deux droites parallèles reste constante. En principe, on ne parle pas de segments parallèles puisque dans la notion de parallélisme, il y a aussi la notion d'infini, or les segments ne sont pas infinis.
Si deux droites forment avec une sécante des angles correspondants égaux, alors ces droites sont parallèles. Si deux droites forment avec une sécante des angles alternes-internes égaux, alors ces deux droites sont parallèles.
Définition: Définition : Deux droites distinctes sont dites parallèles si elles n'ont aucun point en commun. Les droites (d1) et (d2) sont parallèles. Remarque : Deux droites qui ne sont pas parallèles sont sécantes. Attention : Deux droites qui ne se coupent pas sur une figure, ne sont pas forcément parallèles.
● Utiliser l'outil « parallèle»
Tracer une droite (AB), un point C à l'extérieur de la droite. Avec la commande « parallèle » de la barre d'outils, tracer la droite parallèle à (AB) passant par C (désigner successivement la droite puis le point).
1. Si deux droites sont perpendiculaires à une même droite, alors elles sont parallèles. 2. Si deux droites sont parallèles, alors toute droite perpendiculaire à l'une est perpendiculaire à l'autre.
On rappelle que deux droites (AB) et (CD) sont parallèles si et seulement si \left(\overrightarrow{AB} ;\overrightarrow{CD}\right) = 0 +k\pi, avec k \in \mathbb{Z}. Les deux droites (AB) et (CD) sont parallèles si \left(\overrightarrow{AB} ;\overrightarrow{CD}\right) = 0 +k\pi, avec k \in \mathbb{Z}.
1. Les droites (AC) et (BD) sont toutes les deux perpendiculaires à la droite (AB). Ainsi, on en déduit que les droites (AC) et (BD) sont parallèles entre elles.
Deux droites non parallèles à l'axe des ordonnées sont parallèles ou confondues si et seulement si elles ont le même coefficient directeur. Or le coefficient directeur de d_1 vaut 2 et celui de d_2 vaut -1. Les droites d_1 et d_2 ne sont donc pas parallèles.
Théorème de Thalès (appliqué au triangle)
D'après le théorème de Thalès, si les droites (BC) et (MN) sont parallèles, alors on a l'égalité : \frac{AM}{AB} = \frac{AN}{AC} =\frac{MN}{BC}.
Quand on coupe deux droites sécantes au point A par deux droites parallèles (MN) et (BC), on obtient deux triangles ABC et AMN. Le théorème de Thalès énonce que, dans ce type de configuration, les longueurs des côtés d'un triangle sont proportionnels aux côtés associés de l'autre triangle.
Le théorème pourra s'appliquer seulement dans deux cas (voir le schéma ci-dessous) : Deux droites sécantes et deux droites parallèles viennent former deux triangles distincts, reliés entre eux par un sommet. Deux droites sécantes et deux droites parallèles viennent former deux triangles emboîtés avec un sommet commun.
Droites parallèles
Si deux droites ne se croisent jamais, on dit que les droites sont parallèles.
Les droites parallèles sont des droites qui vont dans la même direction. La distance entre elles est constante. Les parallèles ne se rencontrent jamais.
Des droites parallèles confondues sont des droites qui ont exactement la même inclinaison et qui se chevauchent sur toute leur longueur. En d'autres mots, ce sont deux droites qui, une fois superposées, donnent une seule et même droite.
(BH) coupe (AC) en Q, (CH) coupe (AB) en P . Alors (BC) et (PQ) sont parallèles. Puisque A,I,H sont distincts et alignés, il existe un réel k nbon nul tel que vectHI = k vect HA. Déduisez-en que H est le barycentre de (A,-2k), (B,1) (C,1).
Si deux droites forment avec une sécante des angles alternes-internes (correspondants) égaux, alors elles sont parallèles. Si deux droites sont images l'une de l'autre par une symétrie centrale, alors elles sont parallèles.
La réciproque du théorème Pythagore dit que « si un triangle est rectangle, alors le carré de la plus grande longueur (l'hypoténuse) est égale à la somme des carrés des longueurs des deux autres côtés ». La réciproque de Pythagore permet donc de montrer si un triangle est rectangle.
Si deux droites sont perpendiculaires à une même droite, alors elles sont parallèles entre elles. Si deux droites sont parallèles, toute perpendiculaire à l'une est alors perpendiculaire à l'autre.
Comment démontrer une affirmation ? Pour démontrer une affirmation, nous devons utiliser un raisonnement mathématique. Des exemples sont le raisonnement par récurrence, le raisonnement déductif, le raisonnement par contre-exemple, le raisonnement par disjonction de cas et le raisonnement par l'absurde.
La réciproque du théorème de Pythagore : Si dans un triangle, le carré de la longueur du plus grand côté est égal à la somme des carrés des longueurs des autres côtés alors ce triangle est rectangle et l'angle droit est l'angle opposé au plus grand côté.
Propriété : Si deux droites sont perpendiculaires à une même troisième, alors elles sont parallèles entre elles. Conclusion : les droites et sont parallèles.
Points alignés
On dit que trois points ou plus sont alignés s'ils sont sur une même droite. A, B et C sont alignés car A, B et C sont sur la même droite (d).
Notation : Le symbole «⊥» signifie « est perpendiculaire à ». Remarques : • Deux droites perpendiculaires sont sécantes. On utilise une équerre pour tracer une droite perpendiculaire à une autre.