Il faut en repérer la source, l'auteur, la date de publication, le champ (population étudiée, date des données, lieu concernant les données). Il s'agit ensuite de comprendre les données. Pour cela, il peut être utile de repérer le total en lignes ou en colonnes. Enfin, il faut analyser les données du tableau.
Le commentaire de statistiques consiste à lire les données présentées dans le tableau, à analyser le tableau en sélectionnant les informations les plus significatives, et à construire un commentaire organisé et argumenté de ce tableau.
L'interprétation des données est le processus qui consiste à examiner les données et à tirer des conclusions pertinentes à l'aide de diverses méthodes de recherche analytique. L'analyse des données aide les chercheurs à classer, manipuler et résumer les données pour répondre à des questions essentielles.
La statistique est la science qui consiste à réunir des données chiffrées, à les analyser et à les commenter. Une étude statistique s'effectue sur un ensemble appelé population dont les éléments sont appelés individus et consiste à observer et étudier un même aspect sur chaque individu, appelé caractère.
La médiane est le point milieu d'un jeu de données, de sorte que 50 % des unités ont une valeur inférieure ou égale à la médiane et 50 % des unités ont une valeur supérieure ou égale. Dans un jeu de données de petite taille, il suffit de compter le nombre de valeurs (n) et de les ordonner en ordre croissant.
Une variance est toujours positive. La valeur d'une variance ne peut être interprétée que par comparaison à la valeur d'une norme ou d'une autre variance. Si une variance est nulle, cela veut dire que toutes les observations sont égales à la moyenne, ce qui implique qu'il n'y a aucune variation de celles-ci.
Les données peuvent être divisées en 2 grandes catégories. Catégoriques et quantitatives. Les données catégories peuvent être subdivisées en données nominales et ordinales. Les données quantitatives peuvent être discrète ou continue et sont aussi appelées données numériques.
Interpréter des résultats signifie donner du sens aux résultats et nous permettre de verifier si notre hypothèse est vraie ou fausse.
Pour les données qualitatives, il faut s'assurer que les notes ou transcriptions sont complètes et compréhensibles. De plus, il est bon d'examiner si les participant-e-s à la recherche n'ont pas donné de réponses sans rapport avec la question, donc sans pertinence pour le processus interprétatif.
Décrire la situation statistique, c'est donner les in- dividus, éventuellement la population et la taille de l'échantillon, les variables et leur type (dépendante ou indépendante, mais aussi nominale, ordinale ou numérique).
L'objectif de l'analyse des données est d'extraire une information statistique qui permet de cerner plus précisément le profil de la donnée. Les résultats obtenus permettent ensuite d'optimiser la stratégie de la société en question en ajustant certains points.
La variance et l'écart-type nous permettent de quantifier à quel point les données sont dispersées ou regroupées autour de la moyenne. Une variance élevée indique une plus grande dispersion, tandis qu'une variance faible indique une plus grande concentration des données.
Plus l'écart-type est grand, plus les valeurs sont dispersées autour de la moyenne ; plus l'écart-type est petit, plus les valeurs sont concentrées autour de la moyenne. Le carré de l'écart-type est la variance ; la variance est aussi un indicateur de dispersion.
Contrairement à l'étendue et à l'écart interquartile, la variance est une mesure qui permet de tenir compte de la dispersion de toutes les valeurs d'un ensemble de données. C'est la mesure de dispersion la plus couramment utilisée, de même que l'écart-type, qui correspond à la racine carrée de la variance.
Le quartile inférieur, ou premier quartile (Q1), est la valeur au-dessous de laquelle se trouvent 25 % des données lorsqu'elles sont arrangées en ordre croissant. Le quartile supérieur, ou troisième quartile (Q3), est la valeur au-dessous de laquelle se trouvent 75 % des données arrangées en ordre croissant.
L'écart-type sert à mesurer la dispersion, ou l'étalement, d'un ensemble de valeurs autour de leur moyenne. Plus l'écart-type est faible, plus la population est homogène.
La médiane divise une série statistique en deux parts égales, alors que la moyenne est la somme des valeurs de la série, divisée par le nombre de valeurs de cette même série. Concrètement : la médiane est le point central, elle permet d'éliminer les valeurs extrêmes et d'exprimer la valeur du milieu.
Le premier type d'analyse des données est l'analyse descriptive. Il est à la base de toute connaissance des données. Il s'agit de l'utilisation la plus simple et la plus courante des données en entreprise aujourd'hui.