Théorème de Pythagore : Si un triangle est rectangle, alors le carré de la longueur de l'hypoténuse est égal à la somme des carrés des longueurs des deux autres côtés. Avec les notations du triangle ABC rectangle en A, on a BC2=AB2+AC2.
En utilisant le théorème de Pythagore : Si un triangle est rectangle, alors le carré de l'hypoténuse est égal à la somme des carrés des côtés de l'angle droit. Si ABC est un triangle rectangle en A, alors BC² = AB² + AC². En utilisant le cosinus, le sinus ou la tangente d'un angle aigu d'un triangle rectangle.
Théorème de Pythagore :
Si un triangle est rectangle , alors le carré de la longueur de son hypoténuse est égal à la somme des carrés des longueurs des deux autres côtés. Exemple 1 : Soit le triangle ABC rectangle en A ([BC] est donc l'hypoténuse), alors BC²=AC²+BA².
Utilisation du théorème de Pythagore pour calculer la longueur d'un côté d'un triangle rectangle : Dans un triangle rectangle, le carré de l'hypoténuse est égal à la somme des carrés des deux autres côtés. Si ABC est un triangle rectangle en A, alors BC² =AB² + AC² .
L'hypoténuse est opposée à l'angle droit et peut être résolue en utilisant le théorème de Pythagore. Dans un triangle rectangle de cathetus a et b et d'hypoténuse c , le théorème de Pythagore stipule que : a² + b² = c² . Pour résoudre c , prenez la racine carrée des deux côtés pour obtenir c = √(b²+a²) .
Réponse courte, vous ne pouvez pas. Étant donné les trois angles d’un triangle, vous pouvez seulement prouver qu’il est semblable à un autre triangle ayant les trois mêmes angles. Vous avez besoin d'au moins un côté avant de pouvoir utiliser la loi des sinus et la loi des cosinus pour commencer à trouver les autres côtés .
Exemple de mesure de longueur
On note en résumé : largeur = 21 cm = 21 × 1 cm = 21 × 0,01 × 1 m = 0,21 m et longueur = 29,7 cm = 29,7 × 1 cm = 29,7 × 0,01 × 1 m = 0,297 m .
Théorème de Thalès (appliqué au triangle)
ABC est un triangle. M se trouve sur le segment [AB] et N sur le segment [AC]. D'après le théorème de Thalès, si les droites (BC) et (MN) sont parallèles, alors on a l'égalité : \frac{AM}{AB} = \frac{AN}{AC} =\frac{MN}{BC}.
Le théorème de Pythagore est la pierre angulaire des mathématiques qui nous aide à trouver la longueur du côté manquant d’un triangle rectangle. Dans un triangle rectangle de côtés A, B et d'hypoténuse C, le théorème stipule que A² + B² = C² . L'hypoténuse est le côté le plus long, opposé à l'angle droit.
Dans le cas d'un triangle rectangle ABC rectangle en B, le sinus de l'angle A est égal à la longueur du côté opposé à l'angle A divisée par la longueur de l'hypoténuse, donc sin A = BC/AC.
Nous ne connaissons peut-être qu’un côté, mais nous connaissons aussi un angle. Par exemple, si le côté a = 15 et l'angle A = 41°, on peut utiliser un sinus et une tangente pour trouver l'hypoténuse et l'autre côté . Puisque sin A = a/c, nous savons c = a/sin A = 15/sin 41.
Si AB² = AC² + BC² alors le triangle ABC est rectangle en C. Si AB² n'est pas égal à AC² + BC² alors le triangle n'est pas rectangle en C. En effet, si le carré de la longueur du plus grand côté d'un triangle n'est pas égal à la somme des carrés des longueurs des deux autres côtés alors ce triangle n'est pas rectangle.
Connaissant seulement les longueurs des deux côtés du triangle, et aucun angle, vous ne pouvez pas calculer la longueur du troisième côté ; il existe un nombre infini de réponses.
Le théorème de Pythagore nous donne a 2 + b 2 = c 2 pour un triangle rectangle, où c est l'hypoténuse et a et b sont les plus petits côtés. Ici a est égal à 5 et c est égal à 14, donc b 2 = 14 2 – 5 2 = 171. Donc b est égal à la racine carrée de 171 ou environ 13,07.
Théorème : Si le carré de l'hypoténuse est égal à la somme des carrés des deux autres côtés, alors le triangle est rectangle. Si le carré de l'hypoténuse n'est pas égal à la somme des carrés des deux autres côtés, alors le triangle n'est pas rectangle. I. Le théorème de Thales pour calculer une longueur - sens direct.
Calculez l'hypoténuse du triangle isocèle. Comme indiqué précédemment, calculer l'hypoténuse du triangle isocèle équivaut à calculer la longueur de l'un des deux cathets (AC ou CB). Nous divisons la base AB par 2 et obtenons: AH = AB / 2 = 2 cm.
Les longueurs sont généralement mesurées à l'aide de l'unité mètre (m), de ses multiples et ses sous-multiples : Le kilomètre (km) est égal à 1 000 mètres. L'hectomètre (hm) est égal à 100 mètres. Le décamètre (dam) est égal à 10 mètres.
La réciproque du théorème Pythagore dit que « si un triangle est rectangle, alors le carré de la plus grande longueur (l'hypoténuse) est égale à la somme des carrés des longueurs des deux autres côtés ». La réciproque de Pythagore permet donc de montrer si un triangle est rectangle.
Il s'est servi de cette observation pour construire un triangle rectangle tridimensionnel dont les deux côtés égaux se rejoignent à angle droit avant de déduire sa célèbre équation : « le carré de l'hypoténuse est égal à la somme des carrés de la catheti » ou simplement « a² + b² = c² », comme on le dit aujourd'hui.
Si, dans un triangle, la longueur de la médiane issue du sommet opposé au plus grand côté vaut la moitié de la longueur de ce côté, alors le triangle est rectangle.
Explanation: The Pythagorean Theorem gives us a2 + b2 = c2 for a right triangle, where c is the hypotenuse and a and b are the smaller sides.
Le théorème de Pythagore stipule que dans un triangle rectangle, la somme des carrés des deux côtés les plus courts est égale au carré du côté le plus long (l'hypoténuse). Nous pouvons appliquer le théorème pour trouver la longueur du côté manquant d’un triangle rectangle, même lorsque la longueur manquante est l’un des côtés les plus courts .