Chaque base 4, 8 et 16 est une puissance de 2, donc la conversion de et vers le binaire est implémentée en faisant coïncider chaque chiffre avec 2, 3 ou 4 chiffres binaires, ou bits. Par exemple, en base 4, 302104 = 11 00 10 01 00.
Pour réaliser cette conversion il suffit d'effectuer une succession de division par 2. Exemple : On souhaite convertir la valeur décimale 149(10) en un nombre binaire. La conversion du nombre 149(10) (en décimal) en binaire est donc : 1001 0101(2).
Si le nombre se termine par un zéro, le dernier zéro est remplacé par un : par ex. 100 (4) + 1 (1) = 101 (5).
La base est définie par le nombre de signes différents qui permettent d'écrire un nombre. En base 10 → 10 chiffres En base 3 → 3 chiffres (0,1,2). Dans une base « B », les chiffres ont tous une valeur inférieure à « B ». Ex : en base 5, les chiffres utilisés sont 0, 1, 2, 3, 4.
Chiffres utilisés dans une base et symboles
Une base b utilise b chiffres. Pour les bases jusqu'à dix inclus, on utilise les chiffres 0, 1, 2, 3, 4, 5, 6, 7, 8 et 9. + 25 × 60 + 12 ; ce nombre est composé de trois chiffres : 1, 25 et 12.
Chaque base 4, 8 et 16 est une puissance de 2, donc la conversion de et vers le binaire est implémentée en faisant coïncider chaque chiffre avec 2, 3 ou 4 chiffres binaires, ou bits. Par exemple, en base 4, 302104 = 11 00 10 01 00.
En base 10 (la numération décimale), on utilise donc 10 chiffres, soit de 0 à 9 , tandis qu'en base 2 (la numération binaire), on n'utilise que 2 chiffres, c'est-à-dire le zéro (0) et le un (1) .
Système positionnel
La première position est pour les nombres de zéro à neuf, c'est-à-dire que le nombre dans la première position doit être multiplié par dix à la puissance zéro. Le nombre dans la deuxième position est multiplié par dix à la puissance un.
Et cette écriture en base 2 n'utilise cette fois que des chiffres pris dans l'ensemble {0,1}. Par exemple, le nombre 27 se décompose en base 2 sous la forme 27=16+8+2+1=1×16+1×8+0×4+1×2+1×1, et son écriture en base 2 est donc 11011.
Pour écrire un nombre en base 16, il faut disposer d'un caractère pour chacun des entiers de 0 à 15. Or, on ne dispose pas d'assez de chiffres pour écrire les 16 valeurs de la base 16. On complète donc les chiffres de 0 à 9 par les six premières lettres de l'alphabet : A, B, C, D, E, F.
Pour convertir un nombre décimal en nombre binaire (en base B = 2), il suffit de faire des divisions entières successives par 2 jusqu'à ce que le quotient devienne nul. Le résultat sera la juxtaposition des restes. Le bit de poids fort correspondant au reste obtenu à l'ultime étape de la division.
Le système septénaire est le système de numération positionnelle de base 7. Il utilise les chiffres 0, 1, 2, 3, 4, 5, 6 pour représenter n'importe quel nombre. Par exemple, dans le système septénaire, sept est écrit 10, et quarante-neuf est écrit 100.
le compte sur les dix doigts est très intuitif ainsi que cela a été mentionné ci-dessus ; son ordre de grandeur est satisfaisant, car il permet de réduire considérablement la longueur d'un grand nombre par rapport à la base 2, tout en conservant des tableaux d'additions et de multiplications mémorisables.
Certaines populations (Moyen-Orient, Roumanie, Égypte, etc.) connaissent ce système de longue date en comptant les phalanges de la main en omettant celles du pouce (qui est utilisé pour pointer les phalanges des autres doigts). Ce qui donne bien le chiffre douze, base de cette numération.
On présentera aussi une méthode simple pour le passage entre les bases binaire, octale et hexadécimale. Soit (n)10 ∈ N∗ à convertir en base b. est le nombre de fois que bk-3 est dans n3 = n2 − sk-2 bk-2 ... On détermine d'abord les digits de plus fort poids et ensuite les digits de poids faible.
Il suffit de découper le nombre en paquet de 3 ou 4 bits(a partir de la droite) et de remplacer par la valeur correspondante. Les paquets sont de 3 bit pour l'octal et 4bits pour l'hexadécimal. L'hexadécimal et particulièrement pratique car avec 4 lettres un code exactement 4 bits soit un octet.
Les puissances de 2 sont les seuls nombres qui ne sont pas divisibles par un nombre impair autre que 1. Les chiffres des unités des puissances successives de 2 forment une suite périodique (2, 4, 8 et 6). Chaque puissance de 2 est une somme de coefficients binomiaux : Le nombre réel 0,12481632641282565121024…