Une suite auxiliaire est une suite qui ne nous intéresse pas au premier degré dans l'exercice mais qui permet de démontrer des résultats de la suite principale. En général, elle sert à exprimer Un en fonction de n pour une suite arithmético géométrique.
Un+1 - Un = [5n + 5 + 3] - [5n +3]. Un+1 - Un = [5n + 8] - [5n +3]. Un+1 - Un = 5n + 8 - 5n - 3 Un+1 - Un = 5. La différence Un+1 - Un est un réel ne dépendant pas de n (constant), donc la suite (Un) est arithmétique de raison r=5 et de premier terme U0= 3.
On considère une suite (un) définie pour tout entier naturel n par un+1=f(un) où f est une fonction donnée. De plus, le premier terme u0 est également connu. Si l'exercice demande de calculer u1, on peut se servir de la relation un+1=f(un) en remplaçant n par 0. On obtient alors u0+1=f(u0), c'est à dire u1=f(u0).
La raison d'une suite arithmétique, dont le premier terme u1 est égal à a , est donnée par la formule : r=un−an−1 r = u n - a n - 1 . Ce résultat signifie que, pour déterminer la raison, il faut retrancher au dernier terme le premier, puis diviser le résultat obtenu par le nombre de termes diminué de 1.
Ici, dans les expressions obtenues, on aura u1 en fonction de u0 ; u2 en fonction de u1 ; u3 en fonction de u2... Comme u0 = 1, on a u0+1 = −3u0 +2 soit u1 = −3×1+2 = −1 u1+1 = −3u1 +2 soit u2 = −3×(−1)+2 = 5 u3 = −3u2 +2 = −3×5+2 = −13 u4 = −3u3 +2 = −3×(−13)+2 = 41 u5 = −3u4 +2 = −3×41+2 = −121. 2.
On a donc : S10 =11× 1 3 7 2 =11× 22 3 2 = 121 3 .
De plus, u50 = u0 +50r, soit u0 = u50 −50r = 406−50×8 = 6 2.
On considère une suite (un). Il s'agit d'étudier le signe de un+1−un pour tout entier n. Si un+1−un≥0, alors (un) est croissante. Si un+1−un≤0, alors (un) est décroissante.
Pour déterminer le sens de variation d'une suite (un), on peut utiliser l'une des règles suivantes : a) On étudie le signe de la différence un+1 − un. ▶ Si un+1 − un est positive, alors la suite (un) est croissante. ▶ Si un+1 − un est négative, alors la suite (un) est décroissante.
Re : Suite strictement positive
L'idée d'une démonstration par récurrence est simple : Il faut montrer que si une propriété est vraie pour un certain rang, alors elle est vrai pour le rang suivant. Si en plus elle est vraie pour le premier rang (ici n=0), alors cette propriété est vraie.
Une suite géométrique est une suite telle que chaque terme se déduit du précédent par la multiplication par un réel constant (également appelé la raison de la suite). Pour montrer qu'une suite (Vn) est géométrique, on montre qu'il existe un réel q constant tel que, pour tout entier n, V_{n + 1} = q \times V_n.
Une suite (un) est géométrique si et seulement si pour tout entier naturel n, un+1=a×un où a est un nombre indépendant de n. Pour démontrer qu'un suite est géométrique, on peut donc montrer qu'elle respecte bien la relation un+1=a×un. Donc (un) est géométrique de raison a.
Deux cas se présentent : Si la suite auxiliaire \left( v_n \right) est arithmétique de raison r, alors, pour tout entier naturel n, v_n=v_0+nr. Si la suite auxiliaire \left( v_n \right) est géométrique de raison q, alors, pour tout entier naturel n, v_n=q^nv_0.
Quand vous êtes face à une suite de nombres, soit on vous indique qu'il s'agit là d'une suite arithmétique soit vous devez le vérifier par vous-même. Lorsque vous êtes sûr d'avoir affaire à une suite, repérez les deux premiers termes, puis faites la différence entre le deuxième et le premier terme.
Re: Determiner la relation Un+1 et Un
En effet : si la plaque absorbe 10% de l'intensité, il en reste 90 % et calculer 90 % consiste à multiplier par 0,9 donc tu as bien une suite géométrique de premier terme 100 et de raison 0,9. Attention tu as un=u0×qn ce qui donne un=100×0,9n.
En mathématiques, une suite est une famille d'éléments — appelés ses « termes » — indexée par les entiers naturels. Une suite finie est une famille indexée par les entiers strictement positifs inférieurs ou égaux à un certain entier, ce dernier étant appelé « longueur » de la suite.
Si la suite est une suite arithmétique, le nombre réel r s'appelle la raison de cette suite. Autrement dit, une suite est arithmétique si et seulement si chaque terme s'obtient en ajoutant au terme précédent un nombre réel r, toujours le même.
La suite de l'exercice 2 est définie par : u0 = 1 un+1 = 2 × un C'est une suite géométrique de raison 2. un+1 = 9 10 × un C'est une suite géométrique de raison 9 10 .
Exemple : Considérons une suite numérique (un) où la différence entre un terme et son précédent reste constante et égale à 5. Si le premier terme est égal à 3, les premiers termes successifs sont : u0 = 3, u1 = 8, u2 = 13, u3 = 18. Une telle suite est appelée une suite arithmétique de raison 5 et de premier terme 3.