Les hauteurs d'un triangle sont concourantes et le point de concours, s'appelle l'orthocentre du triangle.
Les trois hauteurs d'un triangle sont concourantes en un point appelé l'orthocentre du triangle. La médiatrice d'un segment est la droite perpendiculaire à ce segment et qui passe par son milieu. Les trois médiatrices d'un triangle sont concourantes en un point qui est le centre du cercle circonscrit au triangle.
Si ABC est un triangle, la hauteur issue de A est la droite passant par A et perpendiculaire au côté BC. Le point de la hauteur située sur droite (BC) est le pied de la hauteur. On définit de même les hauteurs issues de B, et de C.
En géométrie euclidienne, un triangle est une figure plane formée par trois points (appelés sommets) et par les trois segments qui les relient (appelés côtés), délimitant un domaine du plan appelé intérieur.
Déposer un côté de l'angle droit de l'équerre sur la base du triangle. Aligner l'autre côté de l'angle droit de l'équerre avec le sommet du triangle. Tracer le segment qui part du sommet et qui rejoint perpendiculairement la base du triangle. Ce segment est la hauteur du triangle.
Triangle rectangle
La hauteur d'un triangle est une droite qui passe par un sommet et qui est perpendiculaire au côté opposé. Ce côté est alors appelé la base du triangle. La hauteur permet de calculer l'aire du triangle.
Le point d'intersection des hauteurs s'appelle l'orthocentre. Remarque : Puisqu'il y a trois hauteurs, il y a trois façons de calculer l'aire d'un même triangle avec cette formule.
Hauteur et aire
La hauteur d'un triangle équilatéral est égale à la longueur que l'on multiplie par la moitié de la racine carrée de 3.
Selon Pythagore, dans un triangle rectangle abc, c étant l'hypoténuse (le plus long côté), on a l'équation suivante : a2 + b2 = c2. C'est cette équation qui va nous permettre de trouver la hauteur de notre triangle !
Il existe quatre principaux types de triangles qui ont chacun des propriétés particulières : le triangle quelconque, le triangle isocèle, le triangle équilatéral et le triangle rectangle. Un triangle possède trois côtés, trois sommets et trois angles.
La bissectrice est la demi-droite qui sépare un angle en deux angles égaux. Elle fait partie des droites remarquables du triangle, au côté de la médiane, de la médiatrice et de la hauteur. Après avoir lu cet article, vous saurez, à tous les coups, comment diviser un angle en deux parts égales.
Avant de plonger dans la définition approfondie, un triangle scalène est un triangle qui n'a pas de côtés égaux. Aucun de ses trois côtés n'est égal à l'autre et il n'a pas non plus d'angles égaux. Dans cet article, nous discutons de la définition, des propriétés et des formules d'un triangle scalène.
orthocentre n.m. Point de concours des hauteurs d'un triangle.
orthocentre , subst. masc. Point de rencontre des trois hauteurs d'un triangle, des quatre hauteurs d'un tétraèdre.
Dans un triangle, si trois lignes sont tracées en partant de chaque angle et en coupant le côté opposé à angle droit, elles se rencontrent en un point d'intersection, qui est appelé orthocentre, en géométrie. Exemple : Tous les triangles possèdent un orthocentre.
Un triangle est équilatéral si les trois côtés ont la même longueur. Cependant, la définition d'un triangle isocèle n'est pas absolue. Euclide a écrit : " Un triangle est isocèle s'il a seulement deux côtés égaux".
En géométrie euclidienne, un triangle équilatéral est un triangle dont les trois côtés ont la même longueur. Ses trois angles internes ont alors la même mesure de 60 degrés, et il constitue ainsi un polygone régulier à trois sommets. Tous les triangles équilatéraux sont semblables.
équilatéral, équilatérale, équilatéraux
Se dit d'un triangle dont tous les côtés ont la même longueur.
Le centre de gravité est le point d'intersection des trois médianes d'un triangle. Le centre du cercle circonscrit au triangle est le point d'intersection des trois médiatrices du triangle. S'il s'agit d'un triangle rectangle, le centre du cercle circonscrit au triangle est le milieu de l'hypoténuse du triangle.
Le point d'intersection est donc sur la bissectrice intérieure issue de C et plus exactement sur la demi-droite bissectrice du secteur angulaire (ACB). Le point d'intersection est alors le centre d'un cercle tangent aux trois côtés du triangle. C'est le cercle inscrit. Cas des cercles exinscrits.
Les points d'intersection avec les axes présentent un intérêt particulier pour l'analyse d'une fonction. Ces points sont appelés abcisse à l'origine et ordonnée à l'origine.
L'hypoténuse est alors le plus grand côté du triangle, et sa longueur est reliée à celles des deux autres côtés par le théorème de Pythagore. Cette relation est même caractéristique des triangles rectangles.
Dans un triangle, la médiane issue d'un sommet est la droite qui passe par ce sommet et par le milieu du côté opposé.
D'après le théorème de Pythagore, si, dans un triangle, le carré du côté le plus long est égal à la somme des carrés des deux autres côtés, alors c'est un triangle rectangle.