400 a des facteurs de 2 et 200 . 200 a des facteurs de 2 et 100 . 100 a des facteurs de 2 et 50 . 50 a des facteurs de 2 et 25 .
420 = 2 × 210 = 2 × 2 × 105 = 2 × 2 × 3 × 35 = 2 × 2 × 3 × 5 × 7 = 22 × 3 × 5 × 7 qui est sa décomposition en produits de facteurs premiers.
450 a des facteurs de 2 et 225 . 225 a des facteurs de 3 et 75 . 75 a des facteurs de 3 et 25 . 25 a des facteurs de 5 et 5 .
Pour décomposer un nombre, on donne la valeur de chaque chiffre du nombre. Il y a plusieurs types de décomposition : la décomposition « additive » ( = utilisation de l'addition) 33545 = 30 000 + 3 000 + 500 + 40 + 5.
300 a des facteurs de 2 et 150 . 150 a des facteurs de 2 et 75 . 75 a des facteurs de 3 et 25 . 25 a des facteurs de 5 et 5 .
5 005 : en effet, 5 005 est bien un multiple de lui-même, puisque 5 005 est divisible par 5 005 (on a 5 005 / 5 005 = 1, donc le reste de cette division est bien nul) 10 010 : en effet, 10 010 = 5 005 × 2. 15 015 : en effet, 15 015 = 5 005 × 3. 20 020 : en effet, 20 020 = 5 005 × 4.
Concernant 425, la réponse est : Non, 425 n'est pas un nombre premier. La liste de ses diviseurs entiers (c'est-à-dire la liste des nombres entiers qui divisent 425) est la suivante : 1, 5, 17, 25, 85, 425.
390 a des facteurs de 2 et 195 . 195 a des facteurs de 3 et 65 . 65 a des facteurs de 5 et 13 .
On peut décomposer son numérateur et son dénominateur en produits de nombres premiers : 840 = 23 × 3 × 5 × 7 et 1 155 = 3 × 5 × 7 × 11.
Le nombre 588 peut se décomposer sous la forme 588 = 2² × 3 × 7².
800 a des facteurs de 2 et 400 . 400 a des facteurs de 2 et 200 . 200 a des facteurs de 2 et 100 . 100 a des facteurs de 2 et 50 .
La liste de ses diviseurs entiers (c'est-à-dire la liste des nombres entiers qui divisent 600) est la suivante : 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 25, 30, 40, 50, 60, 75, 100, 120, 150, 200, 300, 600. Pour que 600 soit un nombre premier, il aurait fallu que 600 ne soit divisible que par lui-même et par 1.
250 a des facteurs de 2 et 125 . 125 a des facteurs de 5 et 25 . 25 a des facteurs de 5 et 5 .
630 a des facteurs de 2 et 315 . 315 a des facteurs de 3 et 105 . 105 a des facteurs de 3 et 35 . 35 a des facteurs de 5 et 7 .
La liste de ses diviseurs entiers (c'est-à-dire la liste des nombres entiers qui divisent 294) est la suivante : 1, 2, 3, 6, 7, 14, 21, 42, 49, 98, 147, 294.
Ou, commencer par décomposer les 6 produits en facteurs premiers : par exemple, dans le premier triangle, 320 = 2 x 2 x 2 x 2 x 2 x 2 x 5 indique que 3, 6, 7 et 9 ne peuvent figurer dans cet alignement qui doit par conséquent contenir les 5 autres facteurs 1, 2, 4, 5 et 8.
Je décompose les nombres : 125=100+20+5 Je décompose les nombres : 125=100+20+5 Je retrouve le nombre.
126 = 2 × 63 = 2 × 2 × 6 75 = 3 × 25 = 2 × 2 × 2 × 3 63 n'est pas divisible par 2.
84 = 2 ×3×7 4.
Décomposer en produit de facteurs premiers
On décompose 120 en produit de facteurs premiers : 120 est divisible par 2 donc 120= 2\times 60. 60 est divisible par 2 donc 60= 2\times 30.
625 a des facteurs de 5 et 125 . 125 a des facteurs de 5 et 25 .
512 a des facteurs de 2 et 256 . 256 a des facteurs de 2 et 128 . 128 a des facteurs de 2 et 64 . 64 a des facteurs de 2 et 32 .
La liste de ses diviseurs entiers (c'est-à-dire la liste des nombres entiers qui divisent 540) est la suivante : 1, 2, 3, 4, 5, 6, 9, 10, 12, 15, 18, 20, 27, 30, 36, 45, 54, 60, 90, 108, 135, 180, 270, 540. Pour que 540 soit un nombre premier, il aurait fallu que 540 ne soit divisible que par lui-même et par 1.