On traduit →w=a→u+b→v en coordonnées. On obtient un système d'inconnues a et b. Si on trouve des solutions alors →u, →v et →w sont coplanaires. S'il n'y a pas de solution, →u, →v et →w ne sont pas coplanaires.
rappel . Deux droites sont coplanaires si et seulement si elle sont parallèles ou sécantes. Pour montrer que deux droites ne sont pas coplanaires, il suffit de montrer qu'elles ne sont ni parallèles ni sécantes.
Ces positions relatives sont par ailleurs caractéristiques des droites coplanaires : pour prouver que deux droites sont coplanaires il suffit de prouver qu'elles sont sécantes ou parallèles, et pour prouver que deux droites ne sont pas coplanaires, il suffit de montrer qu'elles ne sont ni sécantes ni parallèles.
Les vecteurs \vec{u}, \vec{v} et \vec{w} sont coplanaires si, et seulement si, il existe deux nombres réels \lambda et \mu tels que \vec{w} = \lambda \vec{u} + \mu \vec{v}. Vocabulaire On dit que \vec{w} est une combinaison linéaire de \vec{u} et \vec{v}.
Les droites (d) et (d') sont parallèles si et seulement si et sont colinéaires, c'est-à-dire si et seulement si le déterminant de et de est nul. Les droites (d) et (d') sont sécantes si et seulement si et ne sont pas colinéaires, c'est-à-dire si et seulement si le déterminant de et de n'est pas nul.
Pour savoir si →u, →v et →w sont coplanaires:
On cherche si deux vecteurs sont colinéaires parmi les 3. Pour cela, on regarde si leurs coordonnées sont proportionnelles. - S'il y a 2 vecteurs colinéaires alors les 3 vecteurs sont toujours coplanaires. - Sinon on cherche 2 nombres a et b tels que →w=a→u+b→v.
Définition Dans l'espace, deux droites peuvent être coplanaires ou non. Si elles sont coplanaires, alors elles appartiennent à un même plan. Elles peuvent donc être sécantes (avoir un point d'intersection) ou parallèles (strictement parallèles ou confondues).
Des lignes, des segments ou des vecteurs sont coplanaires s'ils sont dessinés sur un plan ou sur des plans parallèles; ils sont tous horizontaux ou verticaux ou obliques de la même manière. Deux droites définies par les équations sont colinéaires si elles ont même coefficient directeur.
Deux vecteurs u et v sont colinéaires si il existe λ un réel tel que u =λv . Les coordonnées de deux vecteurs colinéaires sont proportionnelles. u (−3 ;9) et v (1 ;−3) sont colinéaires car u =−3v .
Alors les vecteurs V 1 , V 2 , … , V p sont linéairement indépendants si et seulement si il existe un mineur d'ordre , non nul, extrait de la matrice ( a i , j ) ) de M n , p ( K ) .
Définition : Trois vecteurs sont coplanaires s'ils possèdent des représentants appartenant à un même plan. Propriété : Soit , et trois vecteurs non coplanaires. Pour tout vecteur , il existe un unique triplet tel que .
Deux droites sont parallèles si et seulement si elles sont coplanaires et non sécantes (c'est-à-dire confondues ou n'ayant aucun point commun). Attention : Dans l'espace, 2 droites non sécantes ne sont pas forcément parallèles !
coplanaire
Se dit de points, de droites situés dans un même plan.
Lorsque deux droites ne sont ni parallèles ni confondues, elles sont sécantes en un point. On peut déterminer les coordonnées de ce point si l'on connaît une équation de chaque droite. Soient les droites d_1 et d_2 d'équations d_1 : y = 2x+1 et d_2 : y = -x+3.
Trois points A, B et C sont alignés si et seulement si les vecteurs A B → \overrightarrow{AB} AB et A C → \overrightarrow{AC} AC sont colinéaires. C'est-à-dire : « A, B et C sont alignés si et seulement s'il existe un réel k tel que A C → = k A B → \overrightarrow{AC} = k \overrightarrow{AB} AC =kAB ».
Solution détaillée. Les trois points A 1 , A 2 , A 3 sont alignés si et seulement si les vecteurs A 1 A 2 → et A 1 A 3 → sont colinéaires, donc si et seulement si le déterminant des vecteurs A 1 A 2 → , A 1 A 3 → , est nul.
2) Les vecteurs u, v et w sont non coplanaires ssi ils forment une base de l'espace, c'est à dire ssi au+bv+cw=0 implique a=b=c=O. Donc, on peut écrire le système d'équation à trois inconnues orrespondant à au+bv+cw=0.
Étymologiquement, colinéaire signifie sur une même ligne : en géométrie classique, deux vecteurs sont colinéaires si on peut en trouver deux représentants situés sur une même droite.
Un repère (ou repère cartésien) de l'espace est un quadruplet ( O , e x → , e y → , e z → ) où est un point arbitrairement choisi comme origine et ( e x → , e y → , e z → ) trois vecteurs non coplanaires.
« Lorsque deux plans sont parallèles, tout plan coupant l'un coupe l'autre et les droites d'intersection sont parallèles ». « Trois points coplanaires sont toujours alignés ». « Trois points alignés sont toujours coplanaires ». « Quatre points non alignés forment toujours un plan ».
Deux plans sont perpendiculaires si leurs vecteurs normaux sont orthogonaux. Il est utile de remarquer que si deux plans sont confondus, alors leurs vecteurs normaux (non nuls) sont colinéaires ; l'équation de l'un des plans et alors un multiple de l'autre.
Pour déterminer si trois points sont alignés, il existe plusieurs méthodes. Les points A, B et C sont alignés ⇔ (AB) et (AC) ont le même cœfficient directeur . A(3 ; 7), B(0 ; –2) et C(1 ; 1) sont-ils alignés ? Les deux cœfficients directeurs sont égaux à 3, donc A, B et C sont alignés.
Les droites parallèles distinctes
Des droites parallèles distinctes sont des droites qui ne se croisent jamais et dont la distance les séparant reste toujours la même.
On peut vérifier que ces deux vecteurs sont linéairement indépendants, donc ils forment une base de F. Si z − 3y + 3x = 0, il n'y a pas de solution. Si z − 3y + 3x = 0, on obtient un syst`eme triangulaire, il y a donc une unique solution. Conclusion : (x, y, z) ∈ F ⇐⇒ z − 3y + 3x = 0.
Un vecteur normal à (Q) est : Il n'existe pas de réel k tel que 1xk=2 et (-1)xk=1 donc ces deux vecteurs ne sont pas colinéaires. Les plans (P) et (Q) ne sont donc pas parallèles. Ils sont par conséquent sécants, et leur intersection est une droite.