f est de la forme u + v avec u(x) = ax et v(x) = b. Alors f′(x) = u′(x) + v′(x) = a × 1 + 0 = a. a = 3 et b = 2 alors sa dérivée est f′(x) = 3.
Pour dériver x à une certaine puissance, on écrit l'exposant devant, on reproduit x avec l'exposant diminué de 1. La dérivée d'un nombre vaut 0. Pour dériver une expression du type "un nombre fois une fonction", on garde le nombre et on dérive la fonction.
On a ainsi : f (x) = u(x) + v(x). Pour tout x de R , u'(x) = 1 et v'(x) = 2x. On constate sur cet exemple que : f '(x) = u'(x) + v'(x) .
Soit I et J deux intervalles, f une fonction de I dans J et g une fonction de J dans R. Si f est dérivable sur I et g est dérivable sur J alors g ◦ f est dérivable sur I et l'on a la formule de dérivation d'une fonction composée : (g ◦ f ) = f × (g ◦ f ).
Une fonction f:I→R f : I → R est donc dérivable en a si et seulement s'il existe α∈R α ∈ R et une fonction ε définie dans un intervalle J ouvert contenant 0 , vérifiant limh→0ε(h)=0 lim h → 0 ε ( h ) = 0 tels que ∀h∈J, f(a+h)=f(a)+αh+hε(h).
égal à : f (a + h) − f (a) a + h − a = f (a + h) − f (a) h . tend vers 0. Ce coefficient directeur s'appelle le nombre dérivé de f en a.
a, b et x sont des réels (quelconques) : cos2(x) + sin2(x)=1, cos(a + b) = cos(a) cos(b) − sin(a) sin(b), sin(a + b) = sin(a) cos(b) + cos(a) sin(b), cos(2x) = 2 cos2(x) − 1=1 − 2 sin2(x), cos2(x) = 1 + cos(2x) 2 , sin(2x) = 2 sin(x) cos(x), sin2(x) = 1 − cos(2x) 2 .
Lorsqu'une fonction n'est pas linéaire, sa pente peut varier d'un point à l'autre. Il nous faut donc introduire la notion de dérivée qui permet d'obtenir la pente en tout point de ces fonctions non linéaires.
Exemple d'utilisation : pour définie sur , sa fonction dérivée est car la dérivée de x2 est 2x (comme on a 3x2, on multiplie 2x par 3) et la dérivée de x est 1 (que l'on multiplie par -2).
1) Dérivée d'une somme
$(u + v)' = u' + v'$.
Pour déterminer le sens de variation d'une fonction f , on étudie le signe de sa dérivée : f ′ ( x ) . Pour interpréter ce signe : Si f ′ ( x ) a le signe + sur un intervalle, alors f est croissante sur cet intervalle. Si f ′ ( x ) a le signe - sur un intervalle, alors f est décroissante sur cet intervalle.
La dérivation consiste à former un nouveau mot en y ajoutant un préfixe et/ou un suffixe. Il s'agit d'ajouter une ou des extensions à un mot pour en modifier le sens.
Soit h un nombre réel tel que a + h a+h a+h appartienne à I. On dit que f est dérivable en a si le taux d'accroissement de f en a admet pour limite un nombre réel lorsque h tend vers zéro. Ce nombre, noté f ′ ( a ) f'(a) f′(a) est appelé nombre dérivé de f en a.
Définition. La dérivée d'une fonction f(x) représente le taux de variation de cette fonction. Elle peut être dénotée f'(x) ou encore dfdx. Le calcul et l'étude de la dérivée sont des notions importantes dans l'étude des fonctions.
Comment calculer le nombre dérivé ? Pour calculer le nombre dérivé, il faut utiliser la formule suivante : lim h → 0 f ( a + h ) − f ( a ) h . Il est également possible d'évaluer la fonction dérivée au point donné.
Sa dérivée est toujours positive (ou nulle pour x = 0).
On va d'abord calculer la dérivée, chercher le signe de la dérivée et donner les variations de la fonction sous la forme d'un tableau à deux lignes. La dérivée f'(x) = 3x²-12, soit 3(x²-4) = 3(x-2)(x+2). Comme il s'agit d'un produit, on sait que la dérivée s'annule pour x=-2 ou pour x=2.
Exemple : Soit une fonction f définie sur un intervalle I. Soit A et B deux points de la courbe représentative de f d'abscisses respectives 1 et 4. Le coefficient directeur de la droite (AB) est égal à : f (4)− f (1) 4−1 = 4,5−3 4−1 = 0,5. Ce quotient est appelé le taux d'accroissement de f entre 1 et 4.
la dérivée n-`eme de f en a l'application x ↦→ f(n)(x). Soit n ∈ N∗. On dit que f est n-fois continûment dérivable (ou de classe Cn) sur D si f est n-fois dérivable sur D et f(n) est continue. On dit que f est indéfiniment dérivable (ou de classe C∞) sur D lorsque pour tout n ∈ N, f est n-fois dérivable sur D.
Pour que la fonction valeur absolue soit dérivable en 0, il doit exister un réel unique L tel que tende vers L lorsque h tend vers 0. Or : si h > 0, donc on aurait L = 1 ; si h < 0, donc on aurait L = −1.
Soient I un intervalle de R, f : I → R une fonction dérivable et a ∈ I. On dit que f est deux fois dérivable en a si f est dérivable en a. La dérivée de f en a s'appelle la dérivée seconde de f en a et se note f (a). On dit que f est deux fois dérivable si f est dérivable.
Attention, si la dérivée s'annule en un point mais ne change pas signe autour de ce point, il ne s'agit pas d'un extremum. Par exemple, si f(x) = x3 alors f′(x)=2x2 et f′(0) = 0 mais f′ ne change pas de signe et 0 n'est pas un extremum de f. 1.
Si la fonction est croissante (respectivement décroissante) alors la dérivée est positive (respectivement négative).