Le déterminant se calcule en multipliant les deux termes de la diagonales : a x d, puis les deux autres : b x c. On soustrait alors, ce qui donne det(A) = a x d – b x c.
La règle de Sarrus (nommée d'après Pierre-Frédéric Sarrus) est un procédé visuel, qui permet de retenir la formule de calcul des déterminants d'ordre 3. La règle de Sarrus consiste à écrire les trois colonnes de la matrice et à répéter, dans l'ordre, les deux premières lignes en dessous de la matrice.
Le rang d'une matrice est égal au nombre de ses lignes sauf si l'une d'entre elles est combinaison linéaire des autres. On dira qu'une matrice est facile si l'une de ses colonnes a tous ses nombres nuls sauf exactement un.
Si la matrice n'est pas carré, elle n'est pas inversible ! et le déterminant d'une matrice non carrée n'existe pas ! 2) Si A est inversible (et donc carrée) alors l'inverse de A s'écrit A^-1 et A*A^-1 = identité.
La matrice M est diagonalisable si et seulement si la somme des multiplicités géométriques est égale à la taille de M. Or chaque multiplicité géométrique est toujours inférieure ou égale à la multiplicité algébrique correspondante.
Il faut donc trouver tous les sous-espaces propres et additionner leurs dimensions pour savoir si une matrice est diagonalisable ou pas. Prenons par exemple une matrice 3 x 3 notée M. On nous dit que les valeurs propres sont 4 et 9. Il n'y a donc que 2 valeurs propres pour un espace de dimension 3.
Il suffit de rentrer chaque matrice de façon "naturelle" élément par élément, séparé d'un espace en effectuant un saut de ligne à chaque fin de ligne de la matrice. Vous pouvez entrer des entiers relatifs et des fractions de la forme -3/4 par exemple.
Utiliser la réduction linéaire par rangées pour trouver une matrice inverse. Accolez la matrice identité à votre matrice. Inscrivez sur votre feuille la matrice de départ M sans l'accolade de droite, tirez un trait vertical à droite de celle-ci, inscrivez la matrice identité et fermez l'accolade.
Le déterminant d'une matrice triangulaire supérieure (ou inférieure) est égal au produit des termes diagonaux.
Dé nition 2.3 (Déterminant de trois vecteurs) Soit u =x1i + y1j + z1k, v =x2i + y2j + z2k, w =x3i + y3j + z3k trois vecteurs de E.
Deux matrices A = ( a i k ) de type ( , ) et B = ( b k j ) de type ( , ) peuvent se multiplier. Le produit de ces deux matrices est une matrice C = ( c i j ) de type ( , ), où l'élément c i j de est obtenu en sommant les produits des éléments de la ième ligne de par les éléments de la jème colonne de .
Une matrice réelle dont toutes les colonnes sont orthogonales deux à deux est inversible si et seulement si elle n'a aucune colonne nulle. Un produit de deux matrices carrées est inversible si et seulement si les deux matrices en facteur le sont aussi.
1. Une matrice A est diagonalisable si et seulement si la somme des dimensions des sous-espaces propres est égale à l'ordre de la matrice. 2. Si une matrice carrée A d'ordre n admet n valeurs propres différentes, alors A est diagonalisable.
Une matrice scalaire est une matrice diagonale (à coefficients dans un anneau) dont tous les coefficients diagonaux sont égaux, c'est-à-dire de la forme λIn où λ est un scalaire et In la matrice identité d'ordre n.
Le spectre de T, noté σT, est l'ensemble des racines du polynôme caractéristique de T. Ainsi, les éléments du spectre sont exactement les valeurs propres de T, et la multiplicité d'une valeur propre λ dans le spectre est égale à la dimension du sous-espace caractéristique de T associé à λ .
Pour démontrer qu'une matrice A est diagonalisable, la méthode la plus classique consiste à calculer le polynôme caractéristique χA et à le factoriser pour déterminer les valeurs propres de A . Si χA n'est pas scindé, A n'est pas diagonalisable. Si χA est scindé à racines simples, A est diagonalisable.