I Addition de nombres relatifs Règle : pour additionner deux nombres de même signe, • on garde le même signe, • et on additionne les distances à zéro. Exemples : • (–3) + (–5) = –8 On garde le même signe – et on fait 3 + 5 pour trouver 8. (+6) + (+4) = +10 On garde le même signe + et on fait 6 + 4 pour trouver 10.
La somme de deux nombres positifs est un nombre positif, la somme de deux nombres négatifs est un nombre négatif.
Définition : un nombre muni d'un signe + ou d'un signe − est appelé nombre relatif. Exemples : + 5 ; -2,1 ; + 600,03 ; -0,01 ; -4. Ces valeurs se rencontrent dans ma vie quotidienne : les températures positives ou négatives, les ascenseurs lorsqu'il y a des sous-sols, etc.
La somme de deux nombres négatifs est négative. Le contraire d'un nombre négatif est un nombre positif.
Pour additionner deux nombres relatifs de signes contraires, on soustrait la plus petite distance à zéro de la plus grande et on prend le signe de celui qui a la plus grande distance à zéro. Exemple 1 : Effectue l'addition suivante : A = (– 7) + (– 3).
Règle des signes —
Le produit de deux nombres positifs est positif ; le produit de deux nombres négatifs est positif ; le produit de deux nombres de signes contraires (c'est-à-dire d'un nombre positif et d'un nombre négatif) est négatif.
Deux nombres de même signe donnent un résultat positif. Deux nombres de signes opposés donnent un résultat négatif. Soustraire un nombre équivaut à ajouter l'opposé de ce nombre. Donc la règle est similaire à celle de l'addition.
I Addition de nombres relatifs
Règle : pour additionner deux nombres de même signe, • on garde le même signe, • et on additionne les distances à zéro. Exemples : • (–3) + (–5) = –8 On garde le même signe – et on fait 3 + 5 pour trouver 8. (+6) + (+4) = +10 On garde le même signe + et on fait 6 + 4 pour trouver 10.
c) * Si deux nombres sont opposés, alors leur somme est nulle. Pour tout nombre a : a + (– a) = 0 .
Règle : Si les deux nombres sont de signes contraires, le plus grand est toujours le nombre positif. Si les deux nombres sont négatifs, le plus grand est celui qui a la plus petite distance à zéro. Si les deux nombres sont positifs, le plus grand est celui qui a la plus grande distance à zéro.
Quel est le signe du produit de 275 nombres relatifs non nuls dont 82 sont positifs ? Il y a 275 − 82 = 193 facteurs négatifs (nombre impair) : le produit est négatif.
Règle des signes dans un produit : - le produit de deux nombres de même signe est positif - le produit de deux nombres de signes différents est négatif.
4) Le produit de 126 nombres négatifs est positif. ⇨ Vrai car si le nombre de facteurs négatifs est pair, alors le signe du produit est '+'.
Le symbole Σ (sigma) s'utilise pour désigner de manière générale la somme de plusieurs termes. Ce symbole est généralement accompagné d'un indice que l'on fait varier de façon à englober tous les termes qui doivent être considérés dans la somme.
Additionner un nombre négatif revient à faire une soustraction. On a 4 $ et on ajoute une dette de 6 $. Ça revient à avoir 4 $ et à perdre 6 $.
Le signe de la somme est le signe du nombre ayant la plus grande distance à zéro. Pour trouver sa distance à zéro, il faut soustraire la plus petite distance à zéro de la plus grande.
L'opposé d'une somme a + b est la somme des opposés de a et de b. L'opposé d'une différence a - b est la somme de b et de l'opposé de a.
Remarques : • 0 n'a pas d'inverse • deux nombres inverses sont soit tous les deux positifs, soit tous les deux négatifs.
Règle des signes : Lorsqu'on divise deux nombres relatifs : – s'ils sont de même signe, le résultat est positif ; – s'ils sont de signe contraire, le résultat est négatif.
Un nombre et son opposé sont de signe contraire, donc leur produit est négatif. Un nombre et son inverse sont de même signe, donc leur produit est positif.
Multiplier des nombres relatifs
Si les deux nombres relatifs à multiplier sont de même signe, alors le résultat sera positif (+). Si les deux nombres relatifs à multiplier sont de signes contraires, alors le résultat sera négatif (-).
Deux règles de priorité
Quand il y a des parenthèses, on effectue en premier les calculs entre parenthèses. Quand il y a plusieurs signes opératoires, on effectue les multiplications et les divisions avant les additions et les soustractions.
On utilise le signe « ≠ ».
Le signe < se lit "est inférieur à" et signifie que le nombre à gauche du signe est plus petit que le nombre à droite. > se lit "est supérieur à" et signifie que le nombre à gauche du signe est plus grand que le nombre à droite.
L'ordre des opérations à prioriser dans un calcul
on commence toujours par les calculs entre parenthèses, puis les puissances, les multiplications ou les divisions et enfin pour terminer les additions ou soustractions.