Diviser par 0,1 , 0,01 ou 0,001 revient à multiplier par 10, 100 ou 1000. Pour diviser un nombre par 10, 100 ou 1 000, il suffit de déplacer sa virgule de 1, 2 ou 3 rangs vers la gauche.
Or, zéro n'a pas d'inverse puisque n'importe quel chiffre multiplié par zéro donne toujours zéro. Par conséquent, la division par zéro est impossible et aboutirait à des contresens mathématiques.
Quand on multiplie par 0,01, on déplace la virgule de deux rangs vers la gauche. Cela équivaut à diviser par 100. Quand on multiplie par 0,001, on déplace la virgule de trois rangs vers la gauche. Cela équivaut à diviser par 1000.
Diviser par 0,1 , 0,01 ou 0,001 revient à multiplier par 10, 100 ou 1000. Pour diviser un nombre par 10, 100 ou 1 000, il suffit de déplacer sa virgule de 1, 2 ou 3 rangs vers la gauche. Multiplier par 0,1 , 0,01 ou 0,001 revient à diviser par 10, 100 ou 1000.
Parce que 1 est l'élément neutre pour la multiplication, et que c'est cet élément neutre qui doit commencer la suite des factorielles, définie récursivement. 1! = 1 = (1–1)! x 1 = 0!
Ainsi 0,1 = 1/10.
En termes vulgarisés, quand x est très petit, 1x est très grand, ce qui peut pousser à convenir que 1/0 vaudrait l'infini. Le problème est que quand x est très petit mais inférieur à 0, 1x devient très important en dessous de zéro. On ne peut donc définir si 1/0 vaudrait plus l'infini ou moins l'infini.
Pour multiplier un nombre par 0,1, 0,01, 0,001, etc., on le divise par 10, 100, 1 000, etc. Pour multiplier un nombre par 0,2, 0,3, 0,02, 0,03, etc.,! on le divise par 10, 100, etc., et l'on multiplie le résultat par 2, 3, etc.
0÷0 est une opération indéfinie! En effet, il est impossible de diviser un nombre par 0. Cependant, si on avait plutôt 0÷6 par exemple, alors le résultat serait 0. En bref, 0 peut être divisé par n'importe quel nombre, le résultat sera toujours 0, mais on ne peut diviser aucun nombre par 0, c'est simplement impossible!
Parce que l'élément absorbant de la multiplication entre des nombres réels est le zéro.
Multiplier par 0,9 = multiplier par 9 et diviser par 10.
Dans l'ensemble des entiers naturels
On remarque alors que 1 divise tout entier naturel et que 0 est divisible par tout entier naturel.
Conséquences : 0 est un diviseur de zéro. Les diviseurs de zéro sont les éléments non réguliers.
Plus généralement, dans l'anneau Z/nZ pour n > 0, comme dans tout anneau fini, tout élément régulier est inversible donc les diviseurs de zéro sont exactement les éléments non nuls et non inversibles.
Au XIIe siècle, le mathématicien indien Bhaskara parvient à établir que 1/0 = l'infini. Il démontre ainsi, la relation qui existe entre le vide et l'infini. Au IXe siècle, les Arabes emprunteront aux Indiens le zéro, le mot sunya devenant sifr.
Le zéro n'est plus seulement un symbole utilisé pour marquer un vide, mais il devient un nombre à part entière. En 628, dans un traité d'astronomie appelé le Brahma Sphuta Siddhanta, Brahmagupta (598 ; 660) définira le zéro comme la soustraction d'un nombre par lui-même (a - a = 0).
tend vers 0 quand x tend vers +∞. Si on a limx→a f (x) = 0 et si, sur DDf , g est bornée, alors on a aussi limx→a f (x)g(x) = 0. Exemple Prenons f := x ↦→ √ x et g := x ↦→ sinx + 3 cosx.
Une fraction est plus petite que 1 si son numérateur est plus petit que son dénominateur. 2 et 3. Ici, toutes les fractions plus petites que 1 ont le même dénominateur.
Explications (2)
Tous les nombres exposant 0 sont égal à 1!
Selon cette définition, les nombres 0 et 1 ne sont donc ni premiers ni composés : 1 n'est pas premier car il n'a qu'un seul diviseur entier positif et 0 non plus car il est divisible par tous les entiers positifs.
Principe : diviser un nombre par 0,5 revient à multiplier ce nombre par 2.