Règle. Pour passer de la forme canonique à la forme générale, il suffit de développer de façon algébrique l'équation de la fonction. Soit l'équation d'une fonction polynomiale de
Cette dernière écriture s'appelle la forme canonique de f. avec α = − b 2a et β = − b2 − 4ac 4a .
On peut en déduire une formule. Pour mettre le trinôme x 2 + b x sous forme canonique, il faut ajouter et retrancher ( b 2 ) 2 . Par exemple, pour mettre x 2 + 6 x sous forme canonique, on ajoute et on retranche ( 6 2 ) 2 = 9 .
La forme canonique : f(x)=a(x−h)2+k f ( x ) = a ( x − h ) 2 + k où h et k sont les coordonnées du sommet.
Un polynôme du second degré n'est pas toujours factorisable. Mais la forme canonique permet de : Savoir si on peut factoriser. Factoriser (mettre sous la forme d'un produit de deux facteurs) lorsque cela est possible.
On souvente que c'est un trinôme. Forme canonique : f(x) = a (x - ∝)² + β où ∝ = - b/2a et β = f(a).
Une fonction polynôme de degré 2 est une fonction définie sur R dont l'expression algébrique peut être mise sous la forme : f ( x ) = a x 2 + b x + c f(x)=ax^2+bx+c f(x)=ax2+bx+c, avec a ≠ 0 a\neq0 a=0.
On parle de distributivité gauche si a (b + c) = (a x b) + (a x c). A l'inverse, on dit que l'opération peut subir une distributivité droite si (a + b) x c = (a x c) + (b x c). Cette technique de distributivité permet le développement ordonné d'un polynôme de premier degré.
Pour factoriser une somme, il faut repérer le facteur commun aux différents termes de la somme. A : le facteur commun est x ; si l'on développe x(x − 5), on retrouve bien x2 − 5x. B : le facteur commun est 2x ; si l'on développe 2x(x − 3 + y), on retrouve bien 2x2− 6x + 2xy.
Définition : Factoriser une expression, c'est transformer une somme ou une différence en produit.
Pour simplifier l'écriture d'une expression littérale, on peut supprimer le symbole × devant une lettre ou une parenthèse. Remarque : On ne peut pas supprimer le signe × entre deux nombres. Exemple : Simplifie l'expression suivante : A = – 5 × x + 7 × (3 × x – 2) × (– 4).
Pour parvenir à factoriser une expression en un produit de facteurs, il faut d'abord chercher si l'on peut isoler un facteur commun. Par exemple on va chercher le terme commun qui permet de multiplier le premier terme par la deuxième expression : 4x+20 par exemple, est égal à 2 x (2x + 10).
➡️ Par exemple, pour un polynôme du second degré P(x) = ax² + bx + c, les racines peuvent être trouvées en résolvant l'équation quadratique ax² + bx + c = 0 à l'aide de la formule quadratique. Autrement dit, un réel a est un racine de P si P(a) = 0. On dit aussi que a est solution de l'équation P(x) = 0.
– Si tous les coefficients ai sont nuls, P est appelé le polynôme nul, il est noté 0. – On appelle le degré de P le plus grand entier i tel que ai = 0 ; on le note degP. Pour le degré du polynôme nul on pose par convention deg(0) = −∞. – Un polynôme de la forme P = a0 avec a0 ∈ K est appelé un polynôme constant.
Pour simplifier une fonction rationnelle 𝑓 ( 𝑥 ) = 𝑝 ( 𝑥 ) 𝑞 ( 𝑥 ) , nous devons effectuer les étapes suivantes : Déterminer les valeurs de 𝑥 avec 𝑞 ( 𝑥 ) = 0 . Ensuite, le domaine de définition de 𝑓 ( 𝑥 ) comprend toutes les valeurs réelles sauf ces racines.
C'est la forme développée de 2(x – 3)(x + 2)(x – 1). On dit qu'un réel r est une racine d'une fonction polynôme du troisième degré f d'expression f(x) = ax3 + bx2 + cx + d lorsque f(r) = 0, c'est-à-dire lorsque ar3 + br2 + cr + d = 0.
Pour P(x) = ax + b,a 0, P est un polynôme du premier degré et pour P(x) = ax2 + bx + c,a 0, P est un polynôme du seconde degré. Pour k allant de 0 à n, les réels ak sont appelés coefficients de degré k du polynôme P. ! Par convention, le degré du polynôme nul, P(x) = 0 est égal à −∞.
Une différence de carrés se factorise grâce à l'identité remarquable a 2 − b 2 = ( a − b ) ( a + b ). Plus généralement, une différence de puissance peut se factoriser sous la forme a n − b n = ( a − b ) × (∑ k =0 n −1 a n −1− k b k ).
Factoriser une expression numérique ou littérale, c'est l'écrire sous la forme d'un produit. L'expression (3x – 7)(2x + 4) est factorisée car elle n'est composée que d'un seul terme qui comporte deux facteurs. Les expressions possèdent deux termes (séparés par un + ou un – ) comportant chacun deux facteurs.
La méthode la plus élémentaire pour factoriser un entier n consiste à prendre tous les entiers inférieurs à n, et à tester s'ils divisent n(=algorithme de force brute). C'est bien sûr un algorithme inutilisable si n est grand.
Afin de simplifier les écritures littérales, on adoptera quelques conventions : 0 × x = 0, 1 × x = x et –1 × x = –x ; Le signe « × » est supprimé entre 2 lettres ou devant une lettre ; Exemples : 2 × b = 2b ou 3 × x × y = 3xy.
Lorsqu'on simplifie une expression littérale, les nombres doivent être multipliés entre eux. Simplification de l'expression littérale D. On commence par placer les nombres devant les lettres classées par ordre alphabétique. On supprime ensuite les signes de multiplication inutiles et on multiplie les nombres entre eux.
I) Ecriture simplifiée
Il s'agit d'une manière visant à enlever les parenthèses pour alléger l'écriture. Pour le faire, il s'agit d'abord de transformer les soustractions en additions, permettant ainsi d'enlever les parenthèses et les signes $+$. Exemples : a) Simplifions l'écriture puis calculons $(+9) – (+3)$.
Développer, c'est transformer une multiplication en une somme ou en une différence. La multiplication est distributive sur l'addition. Cela signifie que, pour tous nombres k, a et b, on a : k(a + b) = ka + kb.