On dit qu'une fonction f est dérivable sur un intervalle I lorsque f est dérivable en tout point de I. On note f la fonction dérivée de f qui à tout x ∈I associe f (x). Si g ne s'annule pas sur I, f g est aussi dérivable sur I et ( f g ) = f g − fg g2 .
On peut également étudier la dérivabilité d'une fonction lorsqu'elle est définie sur un intervalle. Si une fonction est dérivable sur un ensemble ouvert ( 𝑎 ; 𝑏 ) , cela signifie que la fonction est dérivable pour tout 𝑥 ∈ ( 𝑎 ; 𝑏 ) .
Pour déterminer la fonction dérivée d'une fonction sur un intervalle donné, on peut revenir à la définition du nombre dérivé en un point a. On calcule alors la limite du taux d'accroissement de cette fonction entre x et a, lorsque x tend vers a. Ce calcul « à la main » est souvent très long et laborieux.
Si une fonction f f f est définie, continue et strictement monotone sur un intervalle [ a ; b ] [a; b ] [a;b] alors, pour tout réel k k k compris entre f ( a ) f(a) f(a) et f ( b ) f(b) f(b), l'équation f ( x ) = k f(x)=k f(x)=k a une unique solution dans l'intervalle [ a ; b ] .
Une fonction réelle d'une variable réelle est dérivable en un point a quand elle admet une dérivée finie en a, c'est-à-dire, intuitivement, quand elle peut être approchée de manière assez fine par une fonction affine au voisinage de a.
Soient I un intervalle de R, f : I → R une fonction dérivable et a ∈ I. On dit que f est deux fois dérivable en a si f est dérivable en a. La dérivée de f en a s'appelle la dérivée seconde de f en a et se note f (a). On dit que f est deux fois dérivable si f est dérivable.
Une des méthodes les plus couramment utilisées pour déterminer le sens de variation d'une fonction est l'étude du signe de sa dérivée. ➕/➖ La dérivée d'une fonction représente son taux de variation instantanée, et son signe nous renseigne sur la croissance ou la décroissance de la fonction.
Exemple. Soit f une fonction de la variable réelle x définie par f ( x ) = 8 x + 32 . La fonction est définie pour tous les x tels que est positif ou nul et seulement pour ceux-ci. La quantité est positive ou nulle si et seulement si 8 x est supérieur ou égal à − 32 .
Pour que la fonction valeur absolue soit dérivable en 0, il doit exister un réel unique L tel que tende vers L lorsque h tend vers 0. Or : si h > 0, donc on aurait L = 1 ; si h < 0, donc on aurait L = −1.
La dérivée d'une fonction composée, f ∘ g , se calcule en utilisant la formule ( f ∘ g ) ′ ( x ) = g ′ ( x ) × f ′ ( g ( x ) ) . Quant aux limites d'une fonction composée, si lim x → a g ( x ) = b , nous avons que lim x → a f ∘ g ( x ) = lim x → b f ( x ) .
L'ensemble ℕ vient de l'appellation naturale attribuée à Peano. Il désigne l'ensemble des nombres entiers naturels (exemples : 0 1 2 3 7). Si l'on note ℕ*, cela signifie que l'on exclut le zéro. L'ensemble ℤ vient de l'allemand zahlen qui signifie compter.
Remarque : Dire que la fonction carré est définie sur ℝ signifie que peut prendre n'importe quelle valeur de ℝ. La courbe d'équation = de la fonction carré est appelée une parabole. Propriété : La courbe d'équation = de la fonction carré est symétrique par rapport à l'axe des ordonnées.
Soit a et b deux réels. — Si a est positif, la fonction affine f définie sur R par f(x) = ax+b est croissante. — Si a est négatif, la fonction affine f définie sur R par f(x) = ax+b est décroissante. Soit f la fonction affine définie sur R par f(x) = ax+b avec a = 0.
Une fonction f:I→R f : I → R est donc dérivable en a si et seulement s'il existe α∈R α ∈ R et une fonction ε définie dans un intervalle J ouvert contenant 0 , vérifiant limh→0ε(h)=0 lim h → 0 ε ( h ) = 0 tels que ∀h∈J, f(a+h)=f(a)+αh+hε(h). ∀ h ∈ J , f ( a + h ) = f ( a ) + α h + h ε ( h ) .
Attention, si la dérivée s'annule en un point mais ne change pas signe autour de ce point, il ne s'agit pas d'un extremum. Par exemple, si f(x) = x3 alors f′(x)=2x2 et f′(0) = 0 mais f′ ne change pas de signe et 0 n'est pas un extremum de f. 1.
Pour dresser le tableau de variations d'une fonction, il faut calculer la dérivée, étudier le signe de celle-ci, et compléter les valeurs aux extrémités de chacune des flèches placées, en faisant attention aux éventuelles valeurs interdites sur l'intervalle d'étude.
Soit f : [a, b] → R une fonction. (1) Soit x0 ∈]a, b[. Alors f est dérivable en x0 si et seulement si f est dérivable `a droite et `a gauche en x0 et fg(x0) = fd(x0). (2) f est dérivable en a si et seulement si f est dérivable `a droite en a.
Ainsi, il suffit de dire que en dehors de ces réels 0 et 1 (c'est à dire en tout réel distinct de 0 et de 1) la fonction est bien continue (car ce sont des fonctions "usuelles"). Ensuite, il suffit de savoir si en 0, à gauche, la fonction admet une limite et si c'est la même que celle en 0, à droite (si elle existe).
R*+ --> R est la définition d'une application qui prend ses valeurs dans l'ensemble des nombres réels positifs non nul(l'étoile) et dont l'ensemble d'arrivée c'est-à-dire le résultat de l'application ou la fonction est un réel (appartient à R).
Une fonction 𝑓 ∶ 𝑋 ⟶ 𝑌 est une fonction rationnelle si elle peut être écrite sous la forme 𝑓 ( 𝑥 ) = 𝑝 ( 𝑥 ) 𝑞 ( 𝑥 ) , où 𝑝 et 𝑞 sont des fonctions polynomiales et telle que 𝑞 ( 𝑥 ) ≠ 0 pour tout 𝑥 ∈ 𝑋 .
Important! Pour trouver la règle d'une fonction rationnelle, il faut toujours utiliser l'équation sous la forme canonique simplifiée, c'est-à-dire f(x)=ax−h+k.
La fonction inverse est impaire. La représentation graphique de la fonction inverse admet l'origine du repère pour centre de symétrie.
L'ensemble des nombres entiers, représenté par le symbole Z, regroupe tous les nombres naturels (entiers positifs) et leurs opposés (entiers négatifs). Z={…,−3,−2,−1,0,1,2,3,…} Z = { … , − 3 , − 2 , − 1 , 0 , 1 , 2 , 3 , … }
0 est un nombre réel, donc il appartient à R.
Ces deux définitions coexistent encore aujourd'hui. Selon les acceptions, la liste des entiers naturels est donc : 1 ; 2 ; 3 ; 4 ; 5 ; 6 ; 7 ; 8 ; 9 ; 10 ; 11 ; …