➕/➖ La dérivée d'une fonction représente son taux de variation instantanée, et son signe nous renseigne sur la croissance ou la décroissance de la fonction. Si la dérivée est positive sur un intervalle, alors la fonction est croissante sur cet intervalle. Si la dérivée est négative, la fonction est décroissante.
Etudier le signe de f'(x) sur l'intervalle I
A l'inverse, si f'(x) est inférieure ou égale à 0, alors f est décroissante sur I. Pour connaître le signe de f', il suffit simplement de déterminer les valeurs de x pour lesquelles f'(x) s'annule, or on sait construire le tableau de signe d'une fonction de type ax + b.
Pour montrer qu'une fonction f(x) est croissante, il suffit de montrer f(x + a) > f(x) si a est strictement positif ou ce qui revient au même que f(x + a) - f(x) > 0 si a > 0. Avec f(x) = x3 on y arrive comme suit : (x+a)3−x3=x3+3ax2+3a2x+a3−x3.
Méthode : Pour étudier les variations d'une fonction polynome du 3° degré, il suffit de déterminer l'expression de sa fonction dérivée ( qui sera du 2° degré ), puis d'étudier son signe et de conclure avec le théorème.
Pour dresser le tableau de variations d'une fonction, il faut calculer la dérivée, étudier le signe de celle-ci, et compléter les valeurs aux extrémités de chacune des flèches placées, en faisant attention aux éventuelles valeurs interdites sur l'intervalle d'étude.
Une fonction à 2 variables est un objet qui à tout couple de nombres réels (x, y) associe au plus un nombre réel. Si f est une telle fonction, on note f : R × R → R. Si f associe un nombre à (x, y), on note f(x, y) ce nombre. On dit qu'on peut évaluer f en (x, y) et f(x, y) est la valeur de f en (x, y).
▶ Si un+1 − un est positive, alors la suite (un) est croissante. ▶ Si un+1 − un est négative, alors la suite (un) est décroissante. b) Si tous les termes de la suite sont strictement positifs, alors il suffit de comparer le rapport un+1 un à 1. ▶ Si un+1 un ⩾ 1, alors la suite (un) est croissante.
Pour comparer deux fonctions définies par f(x) et g(x): - on calcule f(x) - g(x), en simplifiant autant que possible l'expression. - on réalise le tableau de signes du résultat (revoir les signes des fonctions affines et des trinômes !).
Lorsqu'on se promène sur la courbe en allant de la gauche vers la droite : Sur l'intervalle [0 ; 2,5], on monte, on dit que la fonction est croissante. Sur l'intervalle [2,5 ; 5], on descend, on dit que la fonction est décroissante.
Une variation croissante est symbolisée par une flèche droite dirigée vers le haut à droite, tandis qu'une variation décroissante est symbolisée par une flèche dirigée en bas à droite. Le cas d'une fonction constante sur un intervalle est éventuellement noté par une flèche horizontale dirigée vers la droite.
Une fonction affine est croissante si et seulement si son taux de variation est positif. Une fonction affine est décroissante si et seulement si son taux de variation est négatif. Une fonction affine est constante si et seulement si son taux de variation est nul.
Comment dresser et lire un tableau de variation ? Soient I un intervalle et f une fonction définie sur I. f est croissante sur I signifie que pour tout a et b de I, si a ≤ b, alors f(a) ≤ f(b). f est décroissante sur I signifie que pour tout a et b de I, si a ≤ b, alors f(a) ≥ f(b).
Employée en statistiques, l'intervalle de variation tire son nom du fait qu'elle désigne la différence existante entre la valeur la plus élevée et celle la plus faible de la variable statistique, c'est-à-dire sa variation.
L'intervalle [a ; b] s'appelle l'ensemble de définition de la fonction f. Le réel f(x) s'appelle l'image de x par la fonction f. Soit y un nombre réel. La (ou les) valeur(s) de la variable x qui ont pour image y par f, c'est-à-dire telles que f(x) = y, s'appelle(nt) le (ou les) antécédents de y par f.
Si ƒ est continue et strictement monotone sur un intervalle [a ; b], alors pour tout nombre k compris entre ƒ(a) et ƒ(b), alors l'équation ƒ(x) = k admet une unique solution dans [a ; b]. Pour localiser cette solution, on pourra utiliser sa calculatrice.
Comme f est à valeurs dans J, leurs images respectives f ( a ) et f ( b ) sont deux deux réels de l'intervalle J. Cas où les deux fonctions f et g ont le même sens de variation. f et g sont croissantes : Comme f est strictement croissante sur I, si a < b alors f ( a ) < f ( b ) (on conserve l'ordre !)
On appelle un intervalle l'ensemble des nombres réels compris entre deux nombres réels a et b, ou de manière équivalente l'ensemble des points sur la droite dont la marque est entre a et b. Exemple : l'intervalle [ 2 ; 5 ] est l'ensemble des nombres réels x tels que 2 ≤ x, et x ≤ 5.
On dit qu'une fonction f est monotone ssi elle est soit croissante soit décroissante. La fonction carré x ↦→ x2 n'est pas monotone : en effet, bien qu'elle soit ”tantôt croissante, tantôt décroissante”, elle n'est ni croissante ni décroissante.
Si [a,b] est un intervalle du domaine d'une fonction f, on dit que la fonction f est décroissante dans l'intervalle [a,b] si et seulement si pour tout élément x1 et x2 de [a,b], si x1<x2, alors f(x1)≥f(x2).
Pour déterminer le sens de variation d'une suite arithmétique, il faut utiliser sa raison. En effet, si la raison d'une suite arithmétique est positive, alors elle est croissante. Similairement, si la raison est négative, alors la suite est décroissante.
Si n=p=1 n = p = 1 , une application linéaire de R dans R est simplement une homothétie et il existe donc un réel c tel que L(h)=ch L ( h ) = c h . Ainsi f est différentiable en a si et seulement s'il existe un réel c tel que f(a+h)=f(a)+c⋅h+o(h). f ( a + h ) = f ( a ) + c ⋅ h + o ( h ) .
On peut aisément deviner ce minimum car f(x,y) est une somme de carrés. Pour une fonction de deux variables, le gradient est un vecteur dont les composantes sont les dérivées partielles : df/dx = 2(x-2) df/dy = 2(y-3)
En terme de différentielle, on a la caractérisation suivante : Proposition : Soit f une fonction définie sur un ouvert U de Rn. R n . f est de classe C1 sur U si et seulement si f est différentiable sur U et si l'application x↦dfx x ↦ d f x est continue.
Cette dernière écriture s'appelle la forme canonique de f. avec α = − b 2a et β = − b2 − 4ac 4a .