Si deux grandeurs sont proportionnelles, alors les points de la représentation graphique sont sur une droite passant par l'origine. Si les points de la représentation graphique sont sur une droite passant par l'origine, alors les deux grandeurs sont proportionnelles.
Si les points sont alignés avec l'origine du repère, alors la représentation graphique correspond à une situation de proportionnalité. Si on représente une situation de proportionnalité, alors les points sont alignés avec l'origine du repère.
Une situation de proportionnalité est représentée graphiquement dans un repère par des points alignés avec l'origine du repère. Réciproquement, si une situation est représentée graphiquement dans un repère par des points alignés avec l'origine du repère, alors c'est une situation de proportionnalité.
Retenir Deux grandeurs sont proportionnelles si on peut obtenir toutes les valeurs de l'une en multipliant celles de l'autre par un même nombre non nul. Elles varient toujours dans la même proportion.
En mathématiques, on dit que deux suites de nombres sont proportionnelles quand, en multipliant (ou en divisant) par une même constante non nulle, les termes de l'une on obtient les termes de l'autre.
Deux grandeurs sont proportionnelles si, lorsqu'on en multiplie une par un nombre non nul, l'autre est également multipliée par ce même nombre. Max a acheté 1 croissant pour 1,02€. Pour en acheter 3, il devra payer 3 fois plus cher, c'est-à-dire, 3×1,02=3,06 €. Le prix est proportionnel au nombre de croissants achetés.
Deux grandeurs sont proportionnelles quand on obtient les valeurs de l'une en multipliant par le même nombre – autre que 0 – toutes les valeurs de l'autre. Le nombre qui permet de passer d'une suite de nombres à l'autre s'appelle le « coefficient de proportionnalité ».
Une proportion est un rapport entre les nombres d'éléments d'un ensemble et le nombre d'éléments dans un de ses sous-ensembles. Nous pouvons exprimer une proportion comme une fraction, un nombre décimal ou un pourcentage. Une proportion en pourcentage est une proportion exprimée comme un pourcentage.
Deux grandeurs sont proportionnelles si on obtient les valeurs de l'une en multipliant les valeurs de l'autre par un même nombre. La proportionnalité indique donc une conservation des proportions des grandeurs.
Reconnaître une situation de proportionnalité
Deux grandeurs sont proportionnelles si, lorsqu'une grandeur augmente, l'autre augmente dans la même proportion. Cela signifie qu'elles ont le même multiplicateur.
Une fonction linéaire traduit une situation de proportionnalité.
Définition : Deux grandeurs sont proportionnelles si les valeurs de l'une s'obtiennent en multipliant les valeurs de l'autre par un même nombre appelé coefficient de proportionnalité. Exemple : Des t-shirts sont vendus à l'unité.
Deux grandeur sont proportionnelles si l'on passe de l'une à l'autre en multipliant toujours par le même nombre, qui s'appelle le coefficient de proportionnalité. A et B sont de grandeur et k un nombre , si A=k×B alors on dit que A est proportionnel à B et k est le coefficient de proportionnalité.
Deux grandeurs sont proportionnelles si, lorsqu'on en multiplie une par un nombre non nul, l'autre est également multipliée par ce même nombre.
Pour vérifier si un tableau est un tableau de proportionnalité, il suffit donc de vérifier que les quotients obtenus en divisant les nombres de la deuxième ligne par les nombres de la seconde ligne (ou inversement) sont égaux pour chaque colonne.
Si une situation est une situation de proportionnalité, Alors les points de sa représentation graphique sont alignés avec l'origine du repère. Exemples : C'est une situation de proportionnalité car les points sont alignés avec l'origine du repère.
MÉTHODE – Calcul du coefficient de proportionnalité Pour passer des valeurs d'une grandeur aux valeurs d'une autre, on peut utiliser le coefficient de proportionnalité. Pour trouver ce coefficient, il suffit d'une valeur de la 1re grandeur et de la valeur de la 2e qui correspond. On divise la 2e par la 1re.
1. Se dit d'une quantité qui reste dans son rapport de proportion avec une autre : La somme gagnée est proportionnelle au travail. 2. Qui est déterminé par une proportion, une relation à quelque chose d'autre : Retraite proportionnelle.
Une proportion correspond au rapport mathématique entre une partie et un ensemble : on l'obtient en divisant la partie par l'ensemble. Le pourcentage de répartition est égal à la proportion exprimée en %. Pour lire un pourcentage de répartition, il faut préciser l'ensemble par rapport auquel il est calculé.
Deux grandeurs sont proportionnelles si, lorsqu'on multiplie l'une par un nombre non nul, l'autre est également multipliée par ce même nombre. Connaître le coefficient de proportionnalité entre ces deux grandeurs permet de passer de l'une à l'autre. Cela n'est possible que si les deux grandeurs sont proportionnelles.
La proportionnalité est une relation entre deux grandeurs. Ces deux grandeurs sont dites proportionnelles lorsqu'on peut multiplier ou diviser les valeurs de l'une par un même nombre non nul pour obtenir les valeurs de l'autre. Ce nombre s'appelle le coefficient de proportionnalité.
Définition : la proportionnalité
Deux grandeurs sont proportionnelles si, lorsqu'une grandeur augmente, l'autre augmente dans la même proportion. Cela signifie qu'elles ont le même multiplicateur.
On reconnaît une situation de proportionnalité lorsque le rapport entre les nombres ne change pas. ‚ Exemple 1 : 1 kg de pêches coûte 3 e. Nombre de kg de pêches 1 2 5 Prix en e 3 6 15 Le prix est proportionnel à la masse. Pour trouver le prix, il faut multiplier par le même nombre (par 3).
Un tableau de proportionnalité caractérise une situation de proportionnalité. Il contient les valeurs de deux grandeurs proportionnelles. C'est donc un tableau dans lequel on obtient les nombres d'une ligne en multipliant les nombres de l'autre ligne par le coefficient de proportionnalité.
On reconnaît une situation de proportionnalité lorsque les grandeurs évoluent de la même manière si on les multiplie ou si on les divise par un même nombre (non nul). Exemples : • Si 1 kg de pommes coûte 1,60 € alors 3 kg coûtent 3 fois plus, c'est-à-dire 4,80 €. C'est donc une situation de proportionnalité.