Pour factoriser, on va développer et réduire l'expression en utilisant le même procédé que pour un seul terme (2x + 4 = x(x+2)), mais il faudra insérer des crochets entre les parenthèses afin de bien isoler les termes sans se tromper.
Factoriser c'est transformer une somme en produit en faisant apparaître son facteur commun. Réduire c'est effectuer dans une expression littérale des calculs possibles.
Pour factoriser une somme, il faut repérer le facteur commun aux différents termes de la somme. A : le facteur commun est x ; si l'on développe x(x − 5), on retrouve bien x2 − 5x. B : le facteur commun est 2x ; si l'on développe 2x(x − 3 + y), on retrouve bien 2x2− 6x + 2xy.
Réduire une expression signifie l'écrire sous la forme la plus simple possible, que l'on appellera la forme réduite, c'est-à-dire regrouper les termes possédant les mêmes lettres affectées des mêmes exposants. Pour réduire B, il suffit de « compter les �� » ! Il y en a 7 et 3, donc 10 en tout !
Petite astuce vous pouvez trouver le facteur commun entre 32 et 16 en divisant le plus gros membre par le plus petit -> 32/16 = 2 donc on peut prendre 16 pour facteur commun. Pour "x" il y aura un seul 16 (1x16=16) , et pour "y" il y en aura deux ( 2x16=32).
Factoriser une expression littérale ou numérique, c'est transformer une somme ou une différence en un produit, c'est l'inverse du développement. A = 5 × ( x + 3 ) On écrit entre parenthèses les deux autres facteurs. Si les produits ne sont pas apparents, il faut les faire apparaître.
La réduction peut s'effectuer de deux manières : soit en additionnant ou en soustrayant les équations terme à terme. On additionnera lorsque les coefficients d'une des variables sont opposés et on soustraira lorsque les coefficients d'une des variables sont égaux.
Pour réduire des fractions au même dénominateur, il faut trouver le plus petit multiple commun aux dénominateurs. On distingue plusieurs cas : L'un des dénominateurs est multiple de l'autre. Exemple : \frac{4}{3} et \frac{7}{6} ; 6 = 3 × 2.
Pour exprimer une fraction impropre à sa plus simple expression, divise le numérateur par le dénominateur. Lorsque tu simplifies une fraction impropre à sa plus simple expression, tu obtiens un nombre fractionnaire.
Action de la mettre sous la forme de facteurs, un facteur étant un nombre (ou un groupe de nombres) qui multiplie un ou plusieurs autres nombres (ou groupes de nombres). Transformer une somme algébrique en un produit. Exemple : La factorisation doit mettre en évidence au moins 2 expressions multipliées.
La factorisation consiste à écrire une expression algébrique sous la forme d'un produit de facteurs. Généralement, la factorisation permet de simplifier une expression algébrique afin de résoudre un problème plus facilement.
Factoriser une expression numérique ou littérale, c'est l'écrire sous la forme d'un produit. L'expression (3x – 7)(2x + 4) est factorisée car elle n'est composée que d'un seul terme qui comporte deux facteurs. Les expressions possèdent deux termes (séparés par un + ou un – ) comportant chacun deux facteurs.
Factoriser une expression, c'est transformer une somme ou une différence en un produit. Il faut donc à la base avoir au moins deux termes que l'on additionne ou soustrait. Par exemple dans 8x + 5, les deux termes sont 8x et 5. Dans 6(x+4)2 – 9, les deux termes sont 6(x+4)2 et 9.
Quel est le contraire du verbe factoriser ? L'antonyme de factoriser est développer .
$k(a + b) = k\times a + k\times b$. Développer permet donc de transformer un produit en une somme. On passe d'une somme à un produit : c'est la factorisation. Pour factoriser une expression, il faut faire apparaitre le facteur commun aux deux termes de la somme.
Quand deux fractions ont le même dénominateur, la plus petite est celle qui a le plus petit numérateur. Sauf si des fractions ont le même numérateur ou même dénominateur, on les compare en les « réduisant au même dénominateur » : on range alors les fractions dans l'ordre de leurs numérateurs.
METTRE AU MÊME DÉNOMINATEUR
o On transforme chaque fraction pour une autre équivalente, par dénominateur le PPCM. Pour cela on multiplie les deux membres de chaque fraction par le nombre résultat de diviser le PPCM entre le dénominateur.
Dans une fraction, le dénominateur est le nombre en dessous de la barre de fraction. Le nombre au-dessus s'appelle le numérateur.
Réduire une expression littérale c'est la transformer en une écriture moins volumineuse en additionnant les termes semblables. La règle est la suivante : Lorsque les parenthèses sont précédées du signe « + », on peut les supprimer.
Simplification d'une expression littérale : On peut simplifier les expressions en supprimant le signe si et seulement s'il est suivi d'une lettre (ou parenthèse) ou en utilisant les puissances.
Pour soustraire un polynôme à un autre, il faut additionner l'opposé de chacun des termes semblables du second polynôme à ceux du premier et réduire l'expression algébrique obtenue. On obtient alors un nouveau polynôme correspondant à la somme recherchée.
Factoriser un polynôme du second degré consiste à l'écrire sous la forme d'un produit de polynôme du premier degré. Ce n'est possible que si la fonction polynôme possède 1 ou 2 racines. Une fonction polynôme de degré 2 s'écrit sous la forme où , , sont des réels avec .
Factoriser une expression algébrique
Pour cela on peut chercher un facteur commun aux différents termes de la somme et utiliser en sens inverse les règles précédemment notées. ka + kb = k × a + k × b = k × (a + b) ka - kb = k × a - k × b = k × (a - b) On peut aussi reconnaitre une identité remarquable.