La méthode la plus élémentaire pour factoriser un entier n consiste à prendre tous les entiers inférieurs à n, et à tester s'ils divisent n(=algorithme de force brute). C'est bien sûr un algorithme inutilisable si n est grand.
Prenons le nombre 30 . Il est possible de factoriser ce nombre de la façon suivante. 30=5×6 30 = 5 × 6 On remarque que le facteur 5 est premier, mais que 6 ne l'est pas. Pour obtenir la factorisation première de 30 , on devra factoriser le nombre 6 .
a² + 2ab + b² = (a + b)² a² - 2ab + b² = (a - b)² a² - b² = (a + b)(a - b)
Formule. k × A + k × B = k × (A + B). Pour réussir à factoriser, il faut donc identifier le facteur commun k, puis A et B. Ensuite, il faut remplacer les valeurs trouvées dans la formule.
Action de la mettre sous la forme de facteurs, un facteur étant un nombre (ou un groupe de nombres) qui multiplie un ou plusieurs autres nombres (ou groupes de nombres). Transformer une somme algébrique en un produit. Exemple : La factorisation doit mettre en évidence au moins 2 expressions multipliées.
Définition : Factoriser une expression, c'est transformer une somme ou une différence en produit.
Factoriser une expression littérale ou numérique, c'est transformer une somme ou une différence en un produit, c'est l'inverse du développement. A = 5 × ( x + 3 ) On écrit entre parenthèses les deux autres facteurs. Si les produits ne sont pas apparents, il faut les faire apparaître.
Factoriser une expression littérale, c'est transformer une somme ou une différence en un produit, c'est l'inverse du développement. A = 5 × ( x + 3 ) On écrit entre parenthèses les deux autres facteurs. Si les produits ne sont pas apparents, il faut les faire apparaître.
Factoriser une expression numérique ou littérale, c'est l'écrire sous la forme d'un produit. L'expression (3x – 7)(2x + 4) est factorisée car elle n'est composée que d'un seul terme qui comporte deux facteurs. Les expressions possèdent deux termes (séparés par un + ou un – ) comportant chacun deux facteurs.
La factorisation consiste à écrire une expression algébrique sous la forme d'un produit de facteurs. Généralement, la factorisation permet de simplifier une expression algébrique afin de résoudre un problème plus facilement.
Une expression factorisée est l'écriture d'un produit. L'expression factorisée est 2 × (L + l). 2 × (a + b − 2) = 2 × a + 2 × b − 2 × 2 = 2a + 2b - 4. 5 + 15a + 5 = 5 × 9 + 5 × 3a + 5 × 1 = 5 × (9 + 3a + 1).
Le facteur commun est la lettre "x" (elle se trouve dans chaque terme). La 2ème étape de la factorisation est de mettre en évidence le facteur commun. Note d'abord le facteur commun devant une parenthèse. Divise ensuite chaque terme par le facteur commun et note le résultat dans la parenthèse.
En mathématiques, un facteur est l'un des éléments constitutifs d'un produit. Par exemple, le produit 2 × 3 comporte deux facteurs 2 et 3, ou encore 3 × 7 × 12 admet 7 comme facteur.
Pour factoriser une expression de la forme a²+2ab+b², on utilise l'identité remarquable (a+b)². Par exemple, x²+10x+25 peut être écrit sous la forme (x+5)². Cette méthode est basée sur la reconnaissance de l'identité remarquable (a+b)²=a²+2ab+b² (qu'on peut toujours vérifier en développant le produit (a+b)(a+b)).
La décomposition en produits de facteurs premiers de 252 est 252 = 22 × 32 × 7. La décomposition en produits de facteurs premiers de 132 est 22 × 3 × 11. On a bien 22 × 3 × 11 = 12 × 11 = 132 et il s'agit de sa décomposition en produits de facteurs premiers.
La forme développée sert à vérifier qu'il s'agit bien d'un polynôme du second degré. La forme factorisée sert essentiellement à résoudre des équations et inéquations du second degré. La forme canonique sert à étudier les variations ou trouver un extremum (minimum ou maximum).
Un trinôme est factorisable avec cette méthode si et seulement si la valeur de son discriminant, c'est-à-dire b2−4ac, b 2 − 4 a c , est supérieure ou égale à zéro.
Factoriser un trinôme s'il est le développement d'un carré
Pour développer le carré d'une somme ou le carré d'une différence, on utilise les identités : ( a + b ) 2 = a 2 + 2 a b + b 2 ( a − b ) 2 = a 2 − 2 a b + b 2
Factoriser une expression littérale, c'est transformer une somme ou une différence en un produit, c'est l'inverse du développement. A = 5 × ( x + 3 ) On écrit entre parenthèses les deux autres facteurs. Si les produits ne sont pas apparents, il faut les faire apparaître.
Réduire une expression littérale revient à diminuer le nombre d'opérations la composant. L'expression est bien réduite car on est passé de 3 opérations (2 multiplications et une addition) à une seule multiplication au résultat.
Une expression littérale est une expression dans laquelle figure une ou plusieurs lettres. Des conventions d'écritures et des règles de calculs permettent de simplifier les expressions littérales : ne pas écrire le symbole « × » dans certains cas, supprimer des parenthèses, etc.
Factoriser un polynôme du second degré consiste à l'écrire sous la forme d'un produit de polynôme du premier degré. Ce n'est possible que si la fonction polynôme possède 1 ou 2 racines. Une fonction polynôme de degré 2 s'écrit sous la forme où , , sont des réels avec .
Factoriser une expression algébrique
Pour cela on peut chercher un facteur commun aux différents termes de la somme et utiliser en sens inverse les règles précédemment notées. ka + kb = k × a + k × b = k × (a + b) ka - kb = k × a - k × b = k × (a - b) On peut aussi reconnaitre une identité remarquable.