Pour factoriser une expression de la forme a²+2ab+b², on utilise l'identité remarquable (a+b)². Par exemple, x²+10x+25 peut être écrit sous la forme (x+5)². Cette méthode est basée sur la reconnaissance de l'identité remarquable (a+b)²=a²+2ab+b² (qu'on peut toujours vérifier en développant le produit (a+b)(a+b)).
Formule. k × A + k × B = k × (A + B). Pour réussir à factoriser, il faut donc identifier le facteur commun k, puis A et B. Ensuite, il faut remplacer les valeurs trouvées dans la formule.
a² + 2ab + b² = (a + b)² a² - 2ab + b² = (a - b)² a² - b² = (a + b)(a - b)
Les identités remarquables sont des égalités qui permettent de développer ou de factoriser facilement une expression. Les plus classiques sont celles de degré 2, valables pour tous a,b∈R a , b ∈ R : (a+b)2=a2+2ab+b2 ( a + b ) 2 = a 2 + 2 a b + b 2 (a−b)2=a2−2ab+b2 ( a − b ) 2 = a 2 − 2 a b + b 2 (a+b)(a−b)=a2−b2.
Nous reconnaissons l'identité remarquable 3 : ( a + b ) ( a − b ) (a+b)(a-b) (a+b)(a−b), avec a = 2 x a=2x a=2x et b = 3 b=3 b=3.
a2 - b2 = (a - b) (a + b)
L'aire du trapèze rouge égale celle du trapèze vert. L'aire du rectangle allongé est donc égale à la différence des aires de côtés a et b.
Petite astuce vous pouvez trouver le facteur commun entre 32 et 16 en divisant le plus gros membre par le plus petit -> 32/16 = 2 donc on peut prendre 16 pour facteur commun. Pour "x" il y aura un seul 16 (1x16=16) , et pour "y" il y en aura deux ( 2x16=32).
Factoriser une expression littérale ou numérique, c'est transformer une somme ou une différence en un produit, c'est l'inverse du développement. A = 5 × ( x + 3 ) On écrit entre parenthèses les deux autres facteurs. Si les produits ne sont pas apparents, il faut les faire apparaître.
Action de la mettre sous la forme de facteurs, un facteur étant un nombre (ou un groupe de nombres) qui multiplie un ou plusieurs autres nombres (ou groupes de nombres). Transformer une somme algébrique en un produit. Exemple : La factorisation doit mettre en évidence au moins 2 expressions multipliées.
Factoriser une expression numérique ou littérale, c'est l'écrire sous la forme d'un produit. L'expression (3x – 7)(2x + 4) est factorisée car elle n'est composée que d'un seul terme qui comporte deux facteurs. Les expressions possèdent deux termes (séparés par un + ou un – ) comportant chacun deux facteurs.
La factorisation consiste à écrire une expression algébrique sous la forme d'un produit de facteurs. Généralement, la factorisation permet de simplifier une expression algébrique afin de résoudre un problème plus facilement.
La méthode de la factorisation
Factoriser une expression, cela signifie la transformer en produit de facteurs. Il existe deux méthodes pour factoriser une expression : Utiliser une identité remarquable ; Utiliser la distributivité.
Factoriser une expression, c'est transformer une somme ou une différence en un produit. Il faut donc à la base avoir au moins deux termes que l'on additionne ou soustrait. Par exemple dans 8x + 5, les deux termes sont 8x et 5. Dans 6(x+4)2 – 9, les deux termes sont 6(x+4)2 et 9.
Factoriser un polynôme du second degré consiste à l'écrire sous la forme d'un produit de polynôme du premier degré. Ce n'est possible que si la fonction polynôme possède 1 ou 2 racines. Une fonction polynôme de degré 2 s'écrit sous la forme où , , sont des réels avec .
Factoriser une expression littérale, c'est transformer une somme ou une différence en un produit, c'est l'inverse du développement. A = 5 × ( x + 3 ) On écrit entre parenthèses les deux autres facteurs. Si les produits ne sont pas apparents, il faut les faire apparaître.
Pour calculer une expression sans parenthèses, on effectue les divisions et les multiplications avant les additions et soustractions . Quand une expression comporte plusieurs multiplications ou divisions , on effectue d'abord le calcul le plus à gauche . De même pour les additions ou soustractions.
L'égalité (a-b)²=a²-2ab+b² est la deuxième identité remarquable.
Donc quels que soient a et b, a²-b² = (a+b)(a-b). Factoriser une somme ou une différence c'est l'écrire sous forme d'un produit. La formule ci-dessus permet de factoriser une différence de deux carrés. Par exemple, x²-25 = x²-5² = (x + 5)(x - 5).
Une identité remarquable est une expression mathématique que l'on utilise comme un outil, afin de résoudre une équation plus rapidement. S'en servir permet tout simplement de simplifier les calculs en apparence complexes.
Propriété Soit f ( x ) = a x 2 + b x + c où a ≠ 0 un polynôme du second degré et Δ = b 2 − 4 a c son discriminant. Si : se factorise sous la forme f ( x ) = a ( x − x 1 ) ( x − x 2 ) où et sont les deux racines du polynôme.
La méthode la plus élémentaire pour factoriser un entier n consiste à prendre tous les entiers inférieurs à n, et à tester s'ils divisent n(=algorithme de force brute). C'est bien sûr un algorithme inutilisable si n est grand.
Factoriser une expression littérale, c'est transformer une somme ou une différence en un produit, c'est l'inverse du développement. A = 5 × ( x + 3 ) On écrit entre parenthèses les deux autres facteurs. Si les produits ne sont pas apparents, il faut les faire apparaître.