Pour calculer une expression sans parenthèses, on effectue les divisions et les multiplications avant les additions et soustractions . Quand une expression comporte plusieurs multiplications ou divisions , on effectue d'abord le calcul le plus à gauche . De même pour les additions ou soustractions.
Dans une chaîne de calcul sans parenthèses, lorsqu'il n'y a que des additions et des soustractions, on effectue les calculs de la gauche vers la droite. Règle n°2 : Dans une chaîne de calcul sans parenthèses, on effectue d'abord les multiplications et les divisions avant les additions et les soustractions.
Pour parvenir à factoriser une expression en un produit de facteurs, il faut d'abord chercher si l'on peut isoler un facteur commun. Par exemple on va chercher le terme commun qui permet de multiplier le premier terme par la deuxième expression : 4x+20 par exemple, est égal à 2 x (2x + 10).
Formule. k × A + k × B = k × (A + B). Pour réussir à factoriser, il faut donc identifier le facteur commun k, puis A et B. Ensuite, il faut remplacer les valeurs trouvées dans la formule.
examiner s'il s'agit de sommes ou de produits et compter les termes respectivement les facteurs). Les trois méthodes de factorisation qu'il faut connaître sont : la mise en évidence, les produits (identités) remarquables et le groupement de termes.
Petite astuce vous pouvez trouver le facteur commun entre 32 et 16 en divisant le plus gros membre par le plus petit -> 32/16 = 2 donc on peut prendre 16 pour facteur commun. Pour "x" il y aura un seul 16 (1x16=16) , et pour "y" il y en aura deux ( 2x16=32).
Pour factoriser une expression de la forme a²+2ab+b², on utilise l'identité remarquable (a+b)². Par exemple, x²+10x+25 peut être écrit sous la forme (x+5)². Cette méthode est basée sur la reconnaissance de l'identité remarquable (a+b)²=a²+2ab+b² (qu'on peut toujours vérifier en développant le produit (a+b)(a+b)).
Action de la mettre sous la forme de facteurs, un facteur étant un nombre (ou un groupe de nombres) qui multiplie un ou plusieurs autres nombres (ou groupes de nombres). Transformer une somme algébrique en un produit. Exemple : La factorisation doit mettre en évidence au moins 2 expressions multipliées.
La méthode la plus élémentaire pour factoriser un entier n consiste à prendre tous les entiers inférieurs à n, et à tester s'ils divisent n(=algorithme de force brute). C'est bien sûr un algorithme inutilisable si n est grand.
Factoriser une expression numérique ou littérale, c'est l'écrire sous la forme d'un produit. L'expression (3x – 7)(2x + 4) est factorisée car elle n'est composée que d'un seul terme qui comporte deux facteurs. Les expressions possèdent deux termes (séparés par un + ou un – ) comportant chacun deux facteurs.
La factorisation consiste à écrire une expression algébrique sous la forme d'un produit de facteurs. Généralement, la factorisation permet de simplifier une expression algébrique afin de résoudre un problème plus facilement.
Factoriser une expression littérale ou numérique, c'est transformer une somme ou une différence en un produit, c'est l'inverse du développement. A = 5 × ( x + 3 ) On écrit entre parenthèses les deux autres facteurs. Si les produits ne sont pas apparents, il faut les faire apparaître.
on peut supprimer les parenthèses précédées du signe + sans changer les signes des opérations situées dans la parenthèse, on peut supprimer les parenthèses précédées du signe − à condition de changer les signes des opérations situées dans la parenthèse.
L'usage de parenthèses permet donc de créer une exception aux priorités opératoires (multiplications et divisions prioritaires sur les additions et soustractions). Ainsi, un calcul comme (7 + 2) × 6 s'effectue ainsi : (7 + 2) × 6 = 9 × 6 = 54.
Si une parenthèse est précédée du signe + , on peut supprimer les parenthèses sans rien changer. Si une parenthèse est précédée du signe - , on peut supprimer les parenthèses à condition de changer tous les signes des termes de la parenthèse.
Factoriser un polynôme du second degré consiste à l'écrire sous la forme d'un produit de polynôme du premier degré. Ce n'est possible que si la fonction polynôme possède 1 ou 2 racines. Une fonction polynôme de degré 2 s'écrit sous la forme où , , sont des réels avec .
Factoriser un trinôme s'il est le développement d'un carré
Pour développer le carré d'une somme ou le carré d'une différence, on utilise les identités : ( a + b ) 2 = a 2 + 2 a b + b 2 ( a − b ) 2 = a 2 − 2 a b + b 2
procédés inventés par Isaac Newton et Gottfried W. Leibniz pour trouver les diviseurs linéaires et quadratiques, un véritable algorithme général de factorisation n'a été construit que par Nicolas (I) Bernoulli et Friedrich T. Schubert.
Factoriser une expression littérale, c'est transformer une somme ou une différence en un produit, c'est l'inverse du développement. A = 5 × ( x + 3 ) On écrit entre parenthèses les deux autres facteurs. Si les produits ne sont pas apparents, il faut les faire apparaître.
Pour obtenir la factorisation première de 30 , on devra factoriser le nombre 6 . 30=5×6⇒30=5×2×3 30 = 5 × 6 ⇒ 30 = 5 × 2 × 3 Cette nouvelle factorisation est première, car tous les facteurs sont premiers. Comme il est mentionné dans l'encadré Important ci-haut, cette factorisation est unique.
( a + b ) ( a − b ) = a 2 − b 2 . On utilise souvent aussi celles de degré 3 : (a+b)3=a3+3a2b+3ab2+b3, ( a + b ) 3 = a 3 + 3 a 2 b + 3 a b 2 + b 3 , (a−b)3=a3−3a2b+3ab2−b3, ( a − b ) 3 = a 3 − 3 a 2 b + 3 a b 2 − b 3 , a3−b3=(a−b)(a2+ab+b2).
En mathématiques, on appelle identités remarquables ou encore égalités remarquables certaines égalités qui s'appliquent à des nombres, ou plus généralement à des variables polynomiales. Elles servent en général à accélérer les calculs, à simplifier certaines écritures, à factoriser ou à développer des expressions.