Réciproque du théorème de Pythagore Si dans un triangle le carré de la longueur d'un côté est égal à la somme des carrés des longueurs des deux autres côtés alors ce triangle est rectangle. Propriété (S2) Si deux triangles sont semblables alors les longueurs des côtés opposés aux angles égaux sont proportionnelles.
Cas n° 1 : Si, dans un triangle, le carré de la longueur du côté le plus long est égal à la somme des carrés des longueurs des 2 autres côtés, alors ce triangle est rectangle. AUTRE FORMULATION : Si un triangle ABC est tel que AB² + AC² = BC², alors il est rectangle en A.
Formulation équivalente : si le triangle ABC est rectangle en A alors BC2 = AC2 + AB2. Ainsi, dans un triangle rectangle, le carré de l'hypoténuse est égal à la somme des carrés des côtés de l'angle droit.
Réciproque du théorème de Thalès
Les produits en croix sont égaux donc CD / AC = CE / BC. On sait également que les points A,D,C et B,E,C sont alignés dans le même ordre.
D'après le théorème de Pythagore, si, dans un triangle, le carré du côté le plus long est égal à la somme des carrés des deux autres côtés, alors c'est un triangle rectangle. Si BC2 = AC2 + AB2 alors le triangle ABC est rectangle en A.
La réciproque du théorème Pythagore dit que « si un triangle est rectangle, alors le carré de la plus grande longueur (l'hypoténuse) est égale à la somme des carrés des longueurs des deux autres côtés ». La réciproque de Pythagore permet donc de montrer si un triangle est rectangle.
le théorème de Pythagore :
Dans un triangle rectangle, le carré de la longueur de l'hypoténuse est égale à la somme des carrés des longueurs des deux autres côtés.
1. Qui marque un échange équivalent entre deux personnes, deux groupes : Une amitié réciproque. 2. Qui est la réplique inverse de quelque chose : Proposition réciproque.
Le théorème de Pythagore et sa réciproque s'utilisent dans des contextes différents: Le théorème de Pythagore permet de trouver la longueur d'un côté d'un triangle rectangle. La réciproque du théorème de Pythagore permet de vérifier qu'un triangle est rectangle.
Réponse. le thm de thales sert a montrer que les droites d'un triangles rectangle sont parraleles et le thm de pytagore sert a trouver la longueur d'un cote d'un triangle rectange.
Le côté le plus long est [BC] ; si le triangle était rectangle, ce côté serait l'hypoténuse. D'une part, on a BC² = 20² = 400. D'autre part, on a AC²+AB² = 16² +12² = 256+144 = 400. On constate que BC² =AC²+AB².
Par exemple : On a : 62 = 36, le nombre dont le carré est égal à 36 est 6. On note alors : √36 = 6.
Formule du cosinus
Dans un triangle rectangle, le cosinus d'un angle est le nombre égal à la longueur du côté adjacent divisée par la longueur de l'hypoténuse. Ci-contre, le cosinus de 48° (cos(48) sur la calculatrice) est le nombre qui est égal à la longueur AC divisée par la longueur BC.
Si AMAB=ANAC A M A B = A N A C , et si les points A,B,M A , B , M et les points A,C,N A , C , N sont alignés dans le même ordre, alors les droites (BC) et (MN) sont parallèles.
En utilisant le théorème de Pythagore : Si un triangle est rectangle, alors le carré de l'hypoténuse est égal à la somme des carrés des côtés de l'angle droit. Si ABC est un triangle rectangle en A, alors BC² = AB² + AC².
Si c désigne la longueur d'un côté d'un triangle et h la hauteur relative à ce côté, l'aire de ce triangle est égale à (c × h) ÷ 2.
Lorsque, dans un triangle quelconque, on connaît les longueurs a et b de deux côtés ainsi que l'angle adjacent à ces deux côtés, on peut calculer la longueur c du troisième côté en utilisant le théorème d'Al-Kashi. On considère le triangle ABC suivant tel que b = 2, c=4 et \widehat{A}= \dfrac{\pi}{4}.
Définition de la réciproque
Quand on a une propriété qui s'écrit "Si A alors B", la réciproque serait "Si B alors A". "Si ce mammifère est l'Homme alors ce mammifère peut parler." "Si cet animal est l'Homme alors cet animal peut parler." Fausse car les perroquets parlent aussi.
Quand quelqu'un exprime ses sentiments vis-à-vis d'une autre personne (par exemple s'aimer, se détester, dire sa gratitude), celle-ci peut répondre « c'est réciproque » si elle ressent la même chose.
La relation réciproque d'une fonction f de X dans Y est la relation notée f-1, de Y dans X, telle que, pour tous les éléments du domaine de f, si y = f(x), alors x = f -1(y).
C'est le plus long des trois côtés du triangle. Un côté de l'angle droit est soit opposé, soit adjacent à l'un des angles aigus du triangle. Le côté opposé à un angle est celui qui est en face de cet angle. Celui des deux côtés d'un angle aigu qui est le côté adjacent est celui qui n'est pas l'hypoténuse.
Ainsi donc, l'équation se présente simplifiée : a / sin(α) = c / 1 ou encore a / sin(α) = c. Trouvez l'hypoténuse en divisant la longueur du côté a par le sinus de l'angle α. Il faut opérer en deux temps : on calcule en premier sin(α), que l'on va inscrire, puis on divise la longueur a par ce résultat obtenu.
La relation de Pythagore met en relation les trois côtés du triangle rectangle de la manière suivante : La somme des carrés des mesures des cathètes est égal au carré de la mesure de l'hypoténuse.