Le plan cartésien est d'abord défini par 2 axes perpendiculaires: l'axe des abscisses (les x ) qui est horizontal et l'axe des ordonnées (les y ) qui est vertical. Les deux axes se croisent à l'
En partant de l'origine du repère, sur l'axe des x, il faut se déplacer de 2 unités vers la droite : l'abscisse du point A vaut "2". De là, il faut monter de 3 unités vers le haut, parallèlement à l'axe des y, pour atteindre le point A : l'ordonnée du point A vaut "3".
Pour convertir l'équation polaire en Cartésienne, on utilise : x = r cos θ, donc cos θ = x/r. L'équation r = 2 cos θ devient r = 2x/r. L'équation est celle d'un cercle de centre (1, 0) et de rayon 1.
En coordonnées cartésiennes planaires, la position d'un point A est donnée par les distances xA (abscisse à l'origine) et yA (ordonnée à l'origine). En coordonnées cartésiennes tridimensionnelles, la position d'un point P est donnée par les distances x, y et z.
Dans un repère du plan, l'abscisse d'un point est l'un des deux nombres qui permet de repérer la position de ce point dans le repère. Elle se lit sur l'axe horizontal. L'autre nombre est l'ordonnée. Abscisse et ordonnée sont les coordonnées d'un point : on cite toujours l'abscisse avant l'ordonnée.
Détermination de l'ordonnée à l'origine : Il suffit de lire l'ordonnée du point d'intersection de la droite avec l'axe des ordonnées. L'équation est de la forme y = px + d. L'ordonnée à l'origine est 1. Donc d = 1.
Lecture des coordonnées d'un point du plan
Son abscisse est -5. Son ordonnée est 3.
Pour déterminer la distance séparant 2 points quelconques d'un plan cartésien, on considère que ces 2 points, A et B, sont les extrémités d'un segment correspondant à l'hypoténuse d'un triangle rectangle. La différence des abscisses (x2−x1) ( x 2 − x 1 ) donne la mesure de la cathète horizontale.
Un repère du plan est défini par trois points non alignés (O,I,J). Le point O est l'origine du repère, la droite (OI) est appelée l'axe des abscisses, la droite (OJ) est appelée l'axe des ordonnées.
Un repère de l'espace est constitué de 3 axes : celui des abscisses, celui des ordonnées et celui des cotes. Les coordonnées d'un point de l'espace sont constituées de 3 nombres : l'abscisse, l'ordonnée et la cote de ce point, lisibles sur les axes du même nom.
Le milieu d'un segment est le point situé à égale distance des deux extrémités. On peut trouver les coordonnées du milieu de 𝐴 𝐵 en divisant par deux chacune les distances horizontales et verticales entre 𝐴 et 𝐵 .
Un graphique cartésien est une représentation qui permet de visualiser l'évolution d'une grandeur (en ordonnées) « en fonction » d'une autre (en abscisse).
L'axe horizontal d'un plan cartésien se nomme l'axe des abscisses, ou l'axe des x . Cet axe gradué est orienté de la gauche vers la droite dans le plan cartésien. On y indique la valeur de la variable indépendante dans une relation entre deux variables.
Un repère cartésien est constitué d'un point appelé origine et d'une base de vecteurs. Il facilite ainsi la représentation graphique de données, par projection d'un nuage de points sur les axes principaux d'une analyse en composantes principales par exemple.
1) Deux points A(xA;yA) et B(xB;yB) appartenant à (D): On pose (D): y=ax+b. On remplace les coordonnées des points A et B dans cette équation réduite. On obtient yA=axA+b et yB=axB+b.
Note historique. La notion de repérage dans un plan, appelée plan cartésien, est proposée dans le premier livre de la Géométrie de Descartes, publié en 1637.
Fiches méthodes. Si on a une fonction et qu'on cherche les coordonnées d'un point de sa courbe représentative : on choisit une valeur de x et on calcule y = f(x) en remplaçant x dans l'expression f(x) donnée. On obtient ainsi les coordonnées ( x ; y = f(x) ) d'un point de la représentation graphique de la fonction f.
Chaque point est repéré par deux nombres appelés coordonnées du point. Le premier nombre est appelé l'abscisse du point et le second est appelé l'ordonnée. Ici, A a pour abscisse 2 et pour ordonnée 4. On dit que les coordonnées de A sont (2 ;4) et on note cela A(2 ;4).
Repérage dans l'espace
La droite sur laquelle on lit les abscisses des points est appelée axe des abscisses, celle sur laquelle on lit les ordonnées des points est appelée axe des ordonnées et celle sur laquelle on lit les cotes est appelée axe des cotes.
La distance A B AB AB est donnée par la formule : A B = ( x B − x A ) 2 + ( y B − y A ) 2 AB=\sqrt{\left(x_{B} -x_{A} \right)^{2} +\left(y_{B} -y_{A} \right)^{2} } AB=(xB−xA)2+(yB−yA)2
Dans un repère orthonormé du plan, la distance entre deux points A et B de coordonnées respectives (xA;yA) et (xB;yB) est donnée par : AB=(xB−xA)2+(yB−yA)2 . Démonstration On traite le cas où x_{\mathrm{B}}>x_{\mathrm{A}} et y_{\mathrm{B}}>y_{\mathrm{A}}.
La distance est donc égale au produit du temps par la vitesse. Il est conseillé de ne pas apprendre par cœur cette formule, pour ne pas se tromper, mais plutôt de connaître la démarche permettant de la retrouver à partir de la formule de la vitesse.
Les points d'intersection du graphique d'une fonction f avec l'axe horizontal sont tous les points du graphique de la forme (a,0). De plus, la valeur x=a est un zéro de la fonction f, car f(a)=0. Ainsi, le nombre de points d'intersection du graphique avec l'axe des x est égal au nombre de zéros de la fonction.
Dans l'alphabet, on a dans l'ordre : x, y et z. y est après x, c'est l'image de x. x est avant y, c'est l'antécédent de y.
Dans un plan cartésien, on peut trouver les coordonnées du point d'intersection de deux courbes (comme par exemple deux droites) en résolvant le système d'équations. Soit les droites dont les équations sont y = x – 4 et y = –2x + 5, alors : x – 4 = –2x + 5. On représente ces droites dans un plan cartésien.