La fonction ATAN renvoie l'arctangente d'un nombre déterminé, en radians, dans la page –pi/2 à pi/2. L'arctangente est l'inverse mathématique de la tangente, c'est-à-dire 1/tangente. Autrement dit, l'arctangente est l'angle dont la tangente est le nombre déterminé.
si l'argument (nombre) est l'angle en degrés, multipliez le PI () / 180 ou utilisez la fonction RADIANS pour convertir l'angle en radians. Ie Calculez la valeur cosinus du degré 60, utilisez cette formule =COS(RADIANS(60)) or =COS(60*PI()/180).
Dans un triangle rectangle, le cosinus d'un angle, noté « cos », est égal au rapport (quotient) de la longueur du côté adjacent à cet angle sur la longueur de l'hypoténuse.
La fonction ATAN renvoie l'arctangente d'un nombre déterminé, en radians, dans la page –pi/2 à pi/2. L'arctangente est l'inverse mathématique de la tangente, c'est-à-dire 1/tangente.
La formule de Tan est: tan (α) = opposé a / adjacent b. La tangente de l'angle α peut être représentée en degrés, radian, m radian ou pi radian.
La tangent de l'angle « 0 » est égal au rapport de la longueur du segment AA' sur la longueur du segment O A'. Plus généralement : Dans un triangle rectangle ,La tangente d'un angle est égal au rapport de la longueur du côté opposé à cet angle sur la longueur du côté adjacent à cet angle.
La fonction arc tangente, généralement notée tan−1 ou arctan , est la réciproque de la fonction tangente. Concrètement, la valeur d'un arc tangente répond à la question : « Quel angle me donne une tangente de…? » Pour connaitre la mesure d'un angle, on utilise la touche tan−1 de la calculatrice.
tan(angle) = (côté opposé à l'angle) divisé par (côté adjacent à l'angle). et il faut savoir se repérer par rapport à un angle aigu pour distinguer côté adjacent et côté opposé à l'angle : Pour l'hypoténuse, quel que soit l'angle aigu considéré, c'est toujours le côté opposé à l'angle droit, et le plus grand côté.
Pour trouver la mesure de l'angle aigu à partir d'un cosinus, appuyez sur la touche 2nd (ou shift) puis COS (qui devient Cos-1) (ou Acs, ou Arccos), entrez la valeur du cosinus, puis appuyez sur enter. Ceci est utilisable seulement avec la calculatrice scientifique. Voilà, c'est tout.
La notion de tangente permet d'effectuer des approximations : pour la résolution de certains problèmes qui demandent de connaître le comportement de la courbe au voisinage d'un point, on peut assimiler celle-ci à sa tangente. Ceci explique la parenté entre la notion de tangente et le calcul différentiel.
La fonction OU est couramment utilisée pour développer l'utilité d'autres fonctions qui effectuent des tests logiques. Par exemple, la fonction SI effectue un test logique, puis renvoie une valeur si le résultat du test est VRAI, et une autre valeur si le résultat du test est FAUX.
La tangente d'un angle θ est la longueur du segment de la tangente au cercle trigonométrique qui intercepte l'axe des abscisses. On remarque que cette fonction n'est pas définie pour des valeurs où le cosinus de l'angle s'annule, correspondant aux cas limites où la tangente est parallèle à la droite interceptrice.
Trigonométrie Exemples. Appliquez l'angle de référence en trouvant l'angle avec des valeurs trigonométriques équivalentes dans le premier quadrant. Rendez l'expression négative car la tangente est négative dans le quatrième quadrant. La valeur exacte de tan(45) est 1 .
Le sinus est le rapport entre le côté opposé à l'angle par rapport à l'hypoténuse. Enfin, la tangente est le rapport entre le sinus et le cosinus, ce qui revient à faire le rapport entre le côté opposé à l'angle et le côté adjacent à l'angle.
On met la calculatrice en mode degré ; on tape 100, inv puis tan. L'affichage est : 89,4270613. Le résultat est : l'angle qui a pour tangente 100 mesure 89,4° (au dixième près par défaut). Remarque : la démarche est la même si on connaît un cosinus ou un sinus.
La première colonne, à partir de la deuxième ligne, accueillera les fonctions trigonométriques (sinus, cosinus, tangente, cosécante, sécante et cotangente). Sur la première ligne, à partir de la deuxième colonne, vous indiquerez les angles principaux (0°, 30°, 45°, 60°, 90°).
Remarque L'hypoténuse est le côté le plus long du triangle. Théorème: Si un triangle est rectangle, alors le carré de la longueur de l'hypoténuse est égal à la somme des c carrés des longueurs des deux autres côtés.