Le calcul du Khi2 des données s'effectue comme suit : La donnée observée moins la donnée de l'hypothèse nulle mise au carré et finalement divisée par la donnée de l'hypothèse nulle. *Le « O » est la donnée observée et le « E » est la donnée de l'hypothèse nulle. On répète cette formule pour chaque cellule du tableau.
Dit plus simplement : si votre Khi2 se situe à gauche de la colonne 0,05, vous ne pouvez pas interpréter votre tableau sans prendre de risques. Remarquez que plus le degré de liberté diminue, plus les khi2 théoriques diminue.
Par exemple, la valeur critique de χ² avec 4 degrés de liberté pour la probabilité 0.25 est égale 5.38527. Cela signifie que la surface sous la courbe de la densité de χ² avec 4 degrés de liberté à gauche de la valeur 5.38527 est égale à 0.25 (ou -- à 25% de la surface .
Cette loi est principalement utilisée dans le test du χ2 basé sur la loi multinomiale pour vérifier l'adéquation d'une distribution empirique à une loi de probabilité donnée. Plus généralement elle s'applique dans le test d'hypothèses à certains seuils (indépendance notamment).
Pour obtenir le “khi-deux”, on construit un autre tableau, où l'on calcule le carré de la différence entre valeurs observées et valeurs attendues, divisé par les valeurs attendues. On n'a pas encore utilisé la moindre fonction Excel, excepté la fonction SUM pour calculer les totaux en lignes et en colonnes.
Seuls tests applicable pour un échantillon de taille inférieure `a 6.
Le plus célèbre test de corrélation, ou coefficient de corrélation linéaire de Pearson, consiste à calculer le quotient de la covariance des deux variables aléatoires par le produit de leurs écarts-types. Il s'agit donc d'un test de variables quantitatives.
Plus la valeur de la statistique du khi-carré est élevée, plus la différence entre les effectifs de cellules observés et théoriques est importante, et plus il apparaît que les proportions de colonne ne sont pas égales, que l'hypothèse d'indépendance est incorrecte et, par conséquent, que les variables Situation d' ...
Le coefficient de Pearson permet de mesurer le niveau de corrélation entre les deux variables. Il renvoie une valeur entre -1 et 1. S'il est proche de 1 cela signifie que les variables sont corrélées, proche de 0 que les variables sont décorrélées et proche de -1 qu'elles sont corrélées négativement.
Cette quantité appelée Chi-2 local, ou Chi-2 d'une case est égale au carré de l'écart entre valeur observée et valeur théorique, divisé par l'effectif théorique de la case.
A.
Le test statistique est utile lorsqu'il faut trancher entre 2 hypothèses : H0 : hypothèse nulle, elle correspond à une situation de statu quo. H1 : hypothèse alternative, elle correspond à l'hypothèse qu'on veut démontrer.
ANOVA teste l'homogénéité de la moyenne de la variable quantitative étudiée sur les différentes valeurs de la variable qualitative. L'analyse de la variance, si elle aboutit à un résultat éloigné de zéro, permet de rejeter l'hypothèse nulle : la variable qualitative influe effectivement sur la variable quantitative.
Les méthodes non paramétriques sont utiles lorsque l'hypothèse de normalité ne tient pas et que l'effectif d'échantillon est faible. Cela dit, dans les tests non paramétriques, vos données reposent également sur des hypothèses.
Lorsque l'un des effectifs théoriques est inférieur à 5 ou lorsque les sommes marginales du jeu de données réel sont très déséquilibrées, il est préférable de se fier au test exact de Fisher.
1ère étape : Définir l'hypothèse nulle et l'hypothèse alternative. L'hypothèse nulle Ho correspond à un non-effet de l'expérience. En général cela peut être l'égalité de paramètres statistiques comme la moyenne ou la variance de deux échantillons choisis dans une population. C'est ce que l'on va rejeter ou accepter.
La puissance du test est donnée par le calcul suivant : P =1–P(F < c) où F suit la loi normale de paramètres p et .
Le calcul du Khi2 des données s'effectue comme suit : La donnée observée moins la donnée de l'hypothèse nulle mise au carré et finalement divisée par la donnée de l'hypothèse nulle. *Le « O » est la donnée observée et le « E » est la donnée de l'hypothèse nulle. On répète cette formule pour chaque cellule du tableau.
Le principe du test de khi-deux de contingence est de calculer un indicateur, l'indicateur de Khi-deux, en comparant le tableau orignal (celui des effectifs observés) a un tableau pour lequel la distribution est équiprobable (le tableau des effectifs théoriques ou tableau d'indépendance).
Elle est notamment utilisée pour les tests de Student, la construction d'intervalle de confiance et en inférence bayésienne.
On distingue divers types de variables selon la nature des données. Ainsi, une variable peut être qualitative ou quantitative; une variable qualitative peut être nominale ou ordinale, alors qu'une variable quantitative peut être continue ou discrète.
Par conséquent, les corrélations sont généralement exprimées à l'aide de deux chiffres clés : r = et p = . Plus r est proche de zéro, plus la relation linéaire est faible. Les valeurs positives de r indiquent une corrélation positive lorsque les valeurs des deux variables tendent à augmenter ensemble.