Cela s'articule habituellement autour de l'hypothèse nulle (H0): si on accepte l'hypothèse nulle, l'hypothèse alternative (H1) est infirmée; inversement, si on rejette l'hypothèse nulle, l'hypothèse alternative est confirmée.
Selon l'hypothèse nulle, il n'y a souvent pas de différence ou de lien perceptible entre les variables étudiées. Elle indique l'absence de relation entre les éléments pertinents ou d'effet entre eux. Les chercheurs créent l'hypothèse nulle qui servira de point de référence pour la comparaison de leurs résultats.
Si H0 est vraie, alors la kinésithérapie est inefficace, le taux de guérison sera identique dans les 2 groupes. Si H1 est vraie, alors la kinésithérapie est efficace ou délétère, le taux de guérison sera différent entre les 2 groupes.
L'hypothèse alternative notée H1 est la négation de H0, elle est équivalente à dire « H0 est fausse ». La décision de rejeter H0 signifie que H1 est réalisée ou H1 est vraie. Remarque : Il existe une dissymétrie importante dans les conclusions des tests.
L'hypothèse H0, qui fait l'objet du test, est rejetée dans tous les cas où apparaît un résultat significatif. Une valeur significative est une valeur dont la probabilité d'apparition dans H0 est égale ou inférieure à a .
Cela s'articule habituellement autour de l'hypothèse nulle (H0): si on accepte l'hypothèse nulle, l'hypothèse alternative (H1) est infirmée; inversement, si on rejette l'hypothèse nulle, l'hypothèse alternative est confirmée.
H0 est opposée à une hypothèse appelée hypothèse alternative, notée H1 ou Ha. Souvent, l'hypothèse alternative est celle à laquelle l'utilisateur souhaite aboutir. Elle implique une notion de différence (différence entre moyennes par exemple). Si les données ne vont pas assez à l'encontre de H0, H0 n'est pas rejetée.
une hypothèse ne doit pas servir à démontrer une vérité évidente ; elle doit plutôt laisser place à un certain degré d'incertitude ; une hypothèse doit être vérifiable. L'information disponible devient donc un critère déterminant dans la vérification de l'hypothèse ; une hypothèse doit être précise.
Il existe différents types d'hypothèses. Nous distinguons quatre types : l'hypothèse descriptive, l'hypothèse explicative en termes de facteurs, l'hypothèse explicative en termes de typologie, l'hypothèse explicative en termes de processus.
L'hypothèse selon laquelle on fixe à priori un paramètre de la population à une valeur particulière s'appelle l'hypothèse nulle et est notée H0. N'importe quelle autre hypothèse qui diffère de l'hypothèse H0 s'appelle l'hypothèse alternative (ou contre-hypothèse) et est notée H1.
En statistiques, un test, ou test d'hypothèse, est une procédure de décision entre deux hypothèses. Il s'agit d'une démarche consistant à rejeter ou à ne pas rejeter une hypothèse statistique, appelée hypothèse nulle, en fonction d'un échantillon de données.
Test statistique pour comparer des variables qualitatives
Le nombre ou la fréquence des individus dans chaque classe de groupe ne doit pas être inférieur à 5. Si cette condition n'est pas remplie, il faut utiliser le test Exact de Fisher à sa place. Le Khi-2 est un test non paramétrique.
Il y a toujours deux hypothèses qui sont exactement opposées l'une à l'autre ou qui affirment le contraire. Ces hypothèses opposées sont appelées hypothèse nulle et hypothèse alternative et sont abrégées par H0 et H1.
C'est une idée que l'on va chercher à prouver par la suite. → L'hypothèse doit répondre au problème et être affirmative. Exemple : HYPOTHESE : Les feuilles mortes tombés en automne ont disparu l'été suivant PEUT-ETRE car les êtres vivants de la forêt les ont mangées.
On utilise la structure "Si + verbe à imparfait, verbe au conditionnel présent" pour exprimer une hypothèse. Exemple : Si j'avais une baguette magique, je changerais beaucoup de choses.
L'hypothèse est en effet une réponse provisoire à la question préalablement posée. Elle tend à émettre une relation entre des faits significatifs et permet de les interpréter. Pour que la recherche soit valable, les hypothèses doivent cependant être vérifiables, plausibles et précises.
Dans le cas où les classes sont d'amplitudes inégales, la hauteur du rectangle correspondant à la i-ème classe sera hi = fi/ai (c'est-à-dire la fréquence par unité d'amplitude) ou encore Hi = ni/ai (c'est-à-dire l'effectif par unité d'amplitude).
Le test T est une statistique inférentielle utilisée pour évaluer les différences entre les moyennes de deux groupes. Le test T est généralement utilisé lorsque les ensembles de données suivent une distribution normale et peuvent avoir des variances inconnues.
Soit p>0,05: la différence n'est pas significative, on ne peut pas conclure à une différence. Soit p≤0,05: la différence est significative, le risque pris est précisé, sa valeur est appelée degré de signification.
Quel est l'avantage d'utiliser un test non-paramétrique ? Les tests non-paramétriques sont plus robustes que les tests paramétriques. En d'autres termes, ils peuvent être utilisés dans un plus grand nombre de situations.
Les méthodes non paramétriques sont utiles lorsque l'hypothèse de normalité ne tient pas et que l'effectif d'échantillon est faible.
Lorsque les échantillons peuvent être considérés indépendants, on applique le test de Mann et Whitney pour 2 échantillons, celui de Kruskal et Wallis pour un nombre quelconque d'échantillons. Lorsque on a affaire à deux échantillons appariés (c'est-à-dire non indépendants), on applique le test de Wilcoxon.
on calcule la probabilité observée : p=kn. p = k n . on calcule l'écart du test : t=|p−p0|√p(1−p)√n.
Le niveau du test est défini par α = probabilité de rejeter H0 étant donné que H0 est vraie. Cela veut dire "la probabilité de dire que le produit est efficace étant donné qu'il n'est pas efficace".