Plus l'écart-type est grand, plus les valeurs sont dispersées autour de la moyenne ; plus l'écart-type est petit, plus les valeurs sont concentrées autour de la moyenne. Le carré de l'écart-type est la variance ; la variance est aussi un indicateur de dispersion.
La variance et l'écart-type nous permettent de quantifier à quel point les données sont dispersées ou regroupées autour de la moyenne. Une variance élevée indique une plus grande dispersion, tandis qu'une variance faible indique une plus grande concentration des données.
Si une variance est nulle, cela veut dire que toutes les observations sont égales à la moyenne, ce qui implique qu'il n'y a aucune variation de celles-ci. Par contre, plus une variance est élévée plus la dispersion des observations est importante ; elle est très sensible aux valeurs extrêmes.
L'écart-type ne peut pas être négatif. Un écart-type proche de signifie que les valeurs sont très peu dispersées autour de la moyenne (représentée par la droite en pointillés). Plus les valeurs sont éloignées de la moyenne, plus l'écart-type est élevé.
En mathématiques, l'écart type (aussi orthographié écart-type) est une mesure de la dispersion des valeurs d'un échantillon statistique ou d'une distribution de probabilité. Il est défini comme la racine carrée de la variance ou, de manière équivalente, comme la moyenne quadratique des écarts par rapport à la moyenne.
Exemple : Notation des professeurs X et Y : - L'étendue des notes données par le professeur X est de (13-7)=6, ce qui signifie que l'écart maximum entre deux notes du professeur X est de 4. => La dispersion des notes du professeur Y est donc beaucoup plus forte que celle des notes du professeur X.
E ( X ) = X ¯ = x 1 + ⋯ + x N N . La variance et l'écart-type mesurent eux la dispersion des valeurs de cette série statistique autour de sa moyenne. La variance V(X) est définie par V(X)=1N((x1−¯X)2+⋯+(xN−¯X)2)=1NN∑k=1(xk−¯X)2.
Pour deux ensembles de données ayant la même moyenne, celui dont l'écart-type est le plus grand est celui dans lequel les données sont les plus dispersées par rapport au centre. L'écart-type est égal à 0 zéro si toutes les valeurs d'un ensemble de données sont les mêmes (parce que chaque valeur est égale à la moyenne).
L'écart-type est un outil statistique qui permet d'estimer la dispersion des valeurs par rapport à la moyenne. Plus l'écart-type a une valeur élevée, plus les données sont dispersées par rapport à la moyenne. L'unité de l'écart-type est la même que celle de la moyenne.
L'étendue d'une série statistique est égal à la différence entre la plus grande et la plus petite valeur de la série. Interprétation : - Plus l'étendue d'une série est grande, plus la série est hétérogène. - Plus l'étendue est petite, plus la série est homogène.
La variance est un concept statistique qui nous permet de mieux comprendre les données. D'un point de vue intuitif, elle aide à comprendre la notion de dispersion. D'un point de vue plus formel, elle permet de multiples applications dans le domaine des statistiques.
on le note σ(y) (on prononce sigma ), ce qui permet de noter la variance σ2(y) (ou plus simplement σ2) ; l'écart-type quantifie la dispersion des observations dans la même unité que Y . Cette seconde formule, souvent plus pratique, doit être utilisée avec précaution car elle est sensible aux erreurs d'arrondis.
La variance expliquée est une mesure du lien entre le facteur X et la mesure numérique Y , pour apprécier comment Y dépend du fait d'appartenir à une sous-population ou à une autre.
La statistique est la science qui consiste à réunir des données chiffrées, à les analyser et à les commenter. Une étude statistique s'effectue sur un ensemble appelé population dont les éléments sont appelés individus et consiste à observer et étudier un même aspect sur chaque individu, appelé caractère.
Variance par rapport à l'écart-type
La différence entre la variance et l'écart-type comme indicateur de dispersion est donc que l'écart-type mesure la distance moyenne par rapport à la moyenne et que la variance mesure la distance moyenne au carré par rapport à la moyenne.
La formule avec n-1 ne concerne pas l'écart type de l'échantillon. Le n-1 sert surtout à avoir un estimateur sans biais lorsque tu remplaces la moyenne par la moyenne empirique.
La variance
Cette formule intègre des carrés dans le but d'éviter que les écarts positifs et les écarts négatifs par rapport à la moyenne ne s'annulent. La dimension de cette mesure étant le carré de la dimension de la moyenne, on utilise plus souvent l'écart-type qui n'est rien d'autre que la racine de la variance.
On effectue leur différence. Exemple 1 : Calculons la moyenne de la série des notes de Pierre : 4 • 9 • 12 • 13 • Somme des valeurs : 4 + 9 + 12 + 13 = 38 • Effectif total : 4 (il y a 4 valeurs) • Moyenne : 38 : 4 = 9,5 La moyenne de cette série est de 9,5. C'est comme si Pierre avait obtenu 4 fois la note 9,5.
La façon dont les notes dans un groupe se répartissent autour de la moyenne (l'écart-type) : plus les notes de l'ensemble du groupe sont rapprochées de la moyenne, plus la cote R d'un bon élève a des chances d'être élevée.
Moyenne : La moyenne arithmétique est la somme des valeurs de la variable divisée par le nombre d'individus. La variance : La variance est la moyenne des carrés des écarts à la moyenne. L'écart-type : c'est la racine carrée de la variance.
standard deviation n
Standard deviation is used a lot in statistical research.
Plus l'écart-type est grand, plus les valeurs sont dispersées autour de la moyenne ; plus l'écart-type est petit, plus les valeurs sont concentrées autour de la moyenne. Le carré de l'écart-type est la variance ; la variance est aussi un indicateur de dispersion.