On cherche les coordonnées de deux points distincts A ( x A ; y A ) et B ( x B ; y B ) de la droite d . On sait alors que A B → est un vecteur directeur de d .
L'ensemble des points M(x,y) tels que ax + by + c = 0 avec (a,b) ≠ (0,0) est une droite vecteur directeur . Cette propriété permet de : caractériser en tant que droite l'ensemble des points M(x,y) vérifiant une égalité du type ax + by + c = 0 avec (a,b) ≠ (0,0) ; déterminer un vecteur directeur de cette droite.
Soit une doite (D) du plan. On appelle vecteur normal de la droite (D) tout vecteur (non nul) orthogonal à un vecteur directeur de la droite. Si l'équation cartésienne de (D) est ax+by+c=0, alors un vecteur normal de (D) est le vecteur de coordonnées (a,b).
Un vecteur est défini par un sens, une direction et une norme. La direction du vecteur est celle de la 'droite' dans laquelle est inclus le vecteur, le sens est donné par l'orientation du segment: 'vers la gauche' ou bien 'vers la droite', la norme correspond à la longueur du segment.
Les vecteurs directeurs permettent d'étudier le parallélisme de deux droites. Théorème : Deux droites sont parallèles si, et seulement si, leurs vecteurs directeurs sont colinéaires. Il existe beaucoup de couples de vecteurs directeurs du plan.
Si une droite \left(d\right) a pour équation ax+by +c=0, a, b et c étant trois réels quelconques, alors le vecteur \overrightarrow{u}\left( -b ; a \right) est un vecteur directeur de \left(d\right).
Il est facile de déterminer un vecteur directeur. Si la droite est écrite sous forme réduite (soit y=ax+b y = a x + b ), le vecteur →u(1;a) u → ( 1 ; a ) fait l'affaire. Si son équation apparaît sous forme cartésienne, on prend →u(−β;α) u → ( − β ; α ) ou →u(β;−α) u → ( β ; − α ) .
On rappelle que deux droites sont parallèles si elles ont le même vecteur directeur. Comme les deux droites sont parallèles, elles ont le même vecteur directeur. On peut donc utiliser le vecteur directeur de la droite donnée pour ⃑ 𝑑 dans l'équation vectorielle de la droite recherchée.
Pour calculer la norme d'un vecteur, il faut utiliser la formule ‖ v → ‖ = v x 2 + v y 2 . Pour calculer les coordonnées d'un vecteur, nous utilisons la formule A B → = ( x B − x A y B − y A ) .
Les caractéristiques d'un vecteur sont sa direction, son sens et sa norme. Un vecteur qui a le même point pour origine et pour extrémité est appelé vecteur nul et est noté . Ce vecteur n'a pas de direction, pas de sens et sa norme est égale à 0. Deux vecteurs égaux ont la même direction, le même sens et la même norme.
Une équation cartésienne de droite est une équation de la forme ax+by+c=0. Remarque : Il existe une infinité d'équations cartésiennes d'une même droite. Propriété : Si une droite a pour équation cartésienne ax+by+c=0 alors un vecteur directeur de cette droite a pour coordonnées (−b;a).
Propriété Un vecteur n est normal à un plan P s'il est orthogonal à deux vecteurs non colinéaires de P. Méthode à utiliser Pour montrer que le vecteur й est normal au plan (ABC), on vérifiera que й est orthogonal à AB et AC (on peut aussi raisonner avec AB et BC ou bien encore avec AC et BC).
En mathématiques, et plus précisément en géométrie, la droite normale à une courbe ou à une surface en un point est une droite perpendiculaire à la tangente ou au plan tangent en ce point. Tout vecteur directeur de cette droite est appelé vecteur normal à la courbe ou à la surface en ce point.
(xB - xA ; yB - yA) est l'un des vecteurs directeurs de cette droite. Si une droite a pour équation réduite y =ax + b alors il suffit de déterminer deux points de cette droite pour trouver un vecteur unitaire.
Vecteur directeur :
Le vecteur directeur d'une droite n'est pas unique : deux points quelconques de la droite peuvent définir un vecteur directeur. Si on a deux vecteurs ⃗ u et ⃗ v directeurs de la droite (d), alors ⃗ u et ⃗ v sont colinéaires et on a ⃗ ⃗ det(u ,v )=0.
On peut calculer le coefficient directeur grâce à la formule a = y B - y A x B - x A . Ici, cela donne ... a = 8 - 5 2 - 1 - = 3 1 = 3 . On peut ensuite calculer l'ordonnée à l'origine grâce à la formule b = y B - a × x B = y A - a × x A .
La norme d'un vecteur correspond à sa longueur, c'est-à-dire à la distance qui sépare les deux points qui définissent le vecteur.
Un vecteur est défini par trois composantes : Sa direction : celle de la droite qui porte le vecteur. Son sens : oriente le vecteur (par la flèche) ex : sens de A vers B. Sa longueur (norme en physique) : il suffit de mesurer.
Deux vecteurs non nuls sont orthogonaux si, et seulement si, u ⋅v =0.
Avec des vecteurs directeurs de chaque droite
Deux droites \left(d\right) et \left(d'\right) sont parallèles si et seulement si leurs vecteurs directeurs sont colinéaires. Soient \left(d\right) et \left(d'\right) les droites d'équations cartésiennes respectives 5x+2y+1=0 et -15x-6y+7=0.
Si deux droites forment avec une sécante des angles correspondants égaux, alors ces droites sont parallèles. Si deux droites forment avec une sécante des angles alternes-internes égaux, alors ces deux droites sont parallèles.
Deux vecteurs u et v sont colinéaires si il existe λ un réel tel que u =λv . Les coordonnées de deux vecteurs colinéaires sont proportionnelles. u (−3 ;9) et v (1 ;−3) sont colinéaires car u =−3v .
Le coefficient directeur a représente la « pente » de la droite qui représente une fonction linéaire : si a > 0 a>0 a>0 la droite « monte » ; si a = 0 a=0 a=0 la fonction est constante, la droite est horizontale ; si a < 0 a<0 a<0 la droite « descend ».
Pour « lire » le coefficient directeur d'une droite tracée dans un repère, on rejoint deux de ses points par un parcours horizontal suivi d'un parcours vertical : ces parcours sont orientés (+ ou -) et mesurés (nombre d'unités).
Soit A un point du plan, ⃗ u un vecteur non nul et D la droite passant par A de vecteur directeur ⃗ \vec u. u . Un point M appartient à la droite D si et seulement si les vecteurs ⃗ u et A M → {\overrightarrow{AM}} AM sont colinéaires.