D'après le théorème de Pythagore, le triangle ABC est rectangle si : BC² = AB² + AC². Ainsi, d'après le théorème de Pythagore, BC² = AB² + AC². Alors, le triangle ABC est rectangle en A.
Dans un triangle:
Si le carré de la mesure de son plus grand côté est égal à la somme des carrés des mesures des deux autres côtés, alors ce triangle est rectangle et le plus grand côté est son hypoténuse.
Si AB² = AC² + BC² alors le triangle ABC est rectangle en C. Si AB² n'est pas égal à AC² + BC² alors le triangle n'est pas rectangle en C. En effet, si le carré de la longueur du plus grand côté d'un triangle n'est pas égal à la somme des carrés des longueurs des deux autres côtés alors ce triangle n'est pas rectangle.
AB2+BC2=AC2 A B 2 + B C 2 = A C 2 donc d'après la réciproque du théorème de Pythagore, le triangle ABC est rectangle en B.
Les deux côtés portant une marque sont égaux. Un triangle isocèle est un triangle dont deux côtés sont égaux en longueur. Plus exactement, un triangle ABC est dit isocèle en A lorsque les longueurs des côtés [AB] et [AC] sont égales.
Un triangle rectangle isocèle est un triangle ayant un angle droit et dont deux côtés sont de la même longueur. Un triangle ABC est rectangle et isocèle lorsque la longueur du côté [AB] est égale à la longueur du côté [AC] et que l'angle A vaut 90°.
En géométrie euclidienne, un triangle rectangle est un triangle dont l'un des angles est droit. Les deux autres angles sont alors complémentaires, de mesure strictement inférieure. On nomme alors hypoténuse le côté opposé à l'angle droit. Les deux autres côtés, adjacents à l'angle droit, sont appelés cathètes.
Une méthode consiste à utiliser la propriété des côtés, qui stipule que si les trois côtés d'un triangle sont égaux aux trois côtés d'un autre triangle, alors les triangles sont congruents.
Si, dans un triangle, la longueur de la médiane issue du sommet opposé au plus grand côté vaut la moitié de la longueur de ce côté, alors le triangle est rectangle.
La réciproque du théorème Pythagore dit que « si un triangle est rectangle, alors le carré de la plus grande longueur (l'hypoténuse) est égale à la somme des carrés des longueurs des deux autres côtés ». La réciproque de Pythagore permet donc de montrer si un triangle est rectangle.
Théorème de Pythagore (P) Si un triangle est rectangle alors le carré de la longueur de l'hypoténuse est égal à la somme des carrés des longueurs des deux autres côtés.
La relation AB + BC = AC (qui concerne des distances) n'est vérifiée que si le point B est sur le segment [AC]; de manière générale on ne peut affirmer que AB + BC AC. si et seulement si ABCD est un parallélogramme. L'addition des vecteurs a des propriétés semblables à celles de l'addition des nombres réels.
Il existe quatre principaux types de triangles qui ont chacun des propriétés particulières : le triangle quelconque, le triangle isocèle, le triangle équilatéral et le triangle rectangle. Un triangle possède trois côtés, trois sommets et trois angles.
v Théorème de Pythagore : Si un triangle est rectangle, alors le carré de la longueur de l'hypoténuse est égal à la somme des carrés des longueurs des deux autres côtés. Soit le triangle ABC rectangle en A ci-contre. D'après le théorème de Pythagore, on a : BC2 = AB2 + AC2.
Si un triangle est rectangle , alors le carré de la longueur de son hypoténuse est égal à la somme des carrés des longueurs des deux autres côtés.
Si deux droites parallèles, toute perpendiculaire à l'une est perpendiculaire à l'autre.
La réciproque du théorème de Pythagore
Si dans un triangle ABC, on a BC^2=AB^2+AC^2, alors le triangle ABC est rectangle en A. D'une part, BC^2=5^2=25. D'autre part, AB^2+AC^2=3^2+4^2=9+16=25.
Ses diagonales se coupent en leur milieu et ont même longueur. Ses côtés opposés sont parallèles et de même longueur. Un rectangle a deux axes de symétrie : les médiatrices de ses côtés.
ABC est un triangle isocèle A est le sommet principal.
Triangle rectangle
La hauteur d'un triangle est une droite qui passe par un sommet et qui est perpendiculaire au côté opposé. Ce côté est alors appelé la base du triangle. La hauteur permet de calculer l'aire du triangle.
En géométrie, un triangle rectangle est un triangle dont l'un des angles est droit, c'est-à-dire qu'il mesure 90°.
Si vous connaissez la longueur du plus grand côté (situé à l'opposé de l'angle à 60 degrés), multipliez cette longueur par 2/√(3) pour obtenir la longueur de l'hypoténuse. Ainsi, si le plus grand côté est de 4, l'hypoténuse sera de 4,62 (4 x 2/√(3)).
Règle. La somme des angles intérieurs d'un triangle est toujours égale à 180∘ . Ainsi, il est possible de déduire la mesure du troisième angle lorsque les mesures des deux autres sont connues.
Grâce au cercle circonscrit
Si un triangle est inscrit dans un cercle et a pour côté un diamètre de ce cercle alors ce triangle est rectangle.
Dans un triangle rectangle, l'hypoténuse est le côté opposé à l'angle droit. L'hypoténuse est le plus grand côté du triangle rectangle.