Lorsque deux droites ne sont ni parallèles ni confondues, elles sont sécantes en un point. On peut déterminer les coordonnées de ce point si l'on connaît une équation de chaque droite. Soient les droites d_1 et d_2 d'équations d_1 : y = 2x+1 et d_2 : y = -x+3.
Les droites d'équations y = px + d et y' = p'x + d' sont parallèles p = p', c'est-à-dire si et seulement si elles ont le même coefficient directeur. Les droites d'équations y = px + d et y' = p'x + d' sont sécantes p ≠ p', c'est-à-dire si et seulement si leurs coefficients directeurs sont différents.
À l'aide des équations, on reconnait deux droites sécantes lorsque leur pente est différente (car ce sont des droites qui ne sont pas parallèles). Les équations y=2x+3 y = 2 x + 3 et y=5x+1 y = 5 x + 1 sont sécantes puisque leur pente est différente.
- a = a' et b ≠ b' les droites sont distinctes et parallèles, il n'y a pas de point d'intersection; - a ≠ a'. Les droites sont sécantes en un point J dont les coordonnées sont : xJ=−(b' − ba' – a)=b' − ba – a' x J = - ( b ′ - b a ′ – a ) = b ′ - b a – a ′ et yJ=a×xJ+b y J = a × x J + b .
Deux droites qui se coupent, donc sécantes, en formant un angle droit (angle de 90°) sont dites perpendiculaires. On utilise se symbole : ⊥. Les droites (AB) et (CD) sont perpendiculaires : (AB) ⊥ (CD). Notez bien le symbole sur la figure pour montrer que les deux droites sont perpendiculaires.
Deux droites sont sécantes lorsqu'elles ont un point commun. Ce point est appelé point d'intersection des deux droites.
ABCDEFGH est un cube. - Les droites (EH) et (EF) sont perpendiculaires. - Les droites (BC) et (EF) sont orthogonales. Remarques : - Deux droites perpendiculaires sont coplanaires et sécantes.
Deux droites tracées dans un repère du plan sont parallèles si et seulement si leurs coefficients directeurs sont égaux. Elles sont perpendiculaires si et seulement si le produit de leurs coefficients directeurs est égal à -1.
1. Endroit où deux lignes, deux routes, deux chemins se croisent : À l'intersection de la nationale et de la départementale. 2. En géométrie, lieu où des lignes, des surfaces, des volumes se rencontrent et se coupent : Point d'intersection.
Intersection d'une droite et d'un plan
Il est clair que l'intersection est obtenue en résolvant un système de 3 équations à 3 inconnues. Soit la droite D donnée par { u x + v y + w z = d u ′ x + v ′ y + w ′ z = d ′ et le plan P donné par { x = a + λ u 1 + μ u 2 y = b + λ v 1 + μ v 2 z = c + λ w 1 + μ w 2 .
On rappelle que deux droites (AB) et (CD) sont parallèles si et seulement si \left(\overrightarrow{AB} ;\overrightarrow{CD}\right) = 0 +k\pi, avec k \in \mathbb{Z}. Les deux droites (AB) et (CD) sont parallèles si \left(\overrightarrow{AB} ;\overrightarrow{CD}\right) = 0 +k\pi, avec k \in \mathbb{Z}.
Deux droites sont parallèles si et seulement si elles sont coplanaires et non sécantes (c'est-à-dire confondues ou n'ayant aucun point commun). Attention : Dans l'espace, 2 droites non sécantes ne sont pas forcément parallèles !
Droites qui se coupent en un seul point. Une droite qui n'est ni parallèle, ni perpendiculaire à une droite donnée est parfois appelée une droite oblique.
Sur une droite quelconque représentant une direction donnée, il y a deux sens de parcours. Par un point P du plan passent une infinité de droites; chacune d'elles appartient à une direction différente. Une seule de ces droites passe par un point Q différent de P et cette droite définit la direction PQ.
Ces positions relatives sont par ailleurs caractéristiques des droites coplanaires : pour prouver que deux droites sont coplanaires il suffit de prouver qu'elles sont sécantes ou parallèles, et pour prouver que deux droites ne sont pas coplanaires, il suffit de montrer qu'elles ne sont ni sécantes ni parallèles.
Pour savoir si la droite (MN) est incluse dans le plan (ABC): On regarde si le point M appartient au plan (ABC) en appliquant la méthode "A appartient à un plan". Puis on refait pareil avec le point N. Si les 2 points M et N appartiennent au plan (ABC), alors la droite (MN) est incluse dans le plan (ABC).
Étudier l'intersection de deux droites Méthode
Lorsque deux droites ne sont ni parallèles ni confondues, elles sont sécantes en un point. On peut déterminer les coordonnées de ce point si l'on connaît une équation de chaque droite. Soient les droites d_1 et d_2 d'équations d_1 : y = 2x+1 et d_2 : y = -x+3.
Les points d'intersection du graphique d'une fonction f avec l'axe horizontal sont tous les points du graphique de la forme (a,0). De plus, la valeur x=a est un zéro de la fonction f, car f(a)=0. Ainsi, le nombre de points d'intersection du graphique avec l'axe des x est égal au nombre de zéros de la fonction.
Si vous voyez un panneau “cédez le passage” et un marquage au sol, vous vous trouvez sur un carrefour à sens giratoire. À l'inverse, si vous ne détectez aucune signalisation, cela signifie que vous êtes sur un rond-point.
Théorème de Thalès (appliqué au triangle)
ABC est un triangle. M se trouve sur le segment [AB] et N sur le segment [AC]. D'après le théorème de Thalès, si les droites (BC) et (MN) sont parallèles, alors on a l'égalité : \frac{AM}{AB} = \frac{AN}{AC} =\frac{MN}{BC}.
Deux droites sont sécantes si elles se coupent en un même point. Ce point, commun aux deux droites, est appelé point d'intersection des deux droites.
Comment démontrer une affirmation ? Pour démontrer une affirmation, nous devons utiliser un raisonnement mathématique. Des exemples sont le raisonnement par récurrence, le raisonnement déductif, le raisonnement par contre-exemple, le raisonnement par disjonction de cas et le raisonnement par l'absurde.
La propriété de orthocentre d'un triangle.
Quand deux droites se coupent en formant un angle droit, elles sont perpendiculaires.
Définition : Deux droites perpendiculaires sont deux droites qui se coupent en formant un angle droit.