La dérivée k-i`eme se note f(k) et on a f(k) = (f(k−1)) . On dit que f est indéfiniment dérivable si f est k-dérivable pour tout k. On dit que f est de classe Ck si f(k) existe et est continue.
La dérivabilité se démontre usuellement de deux façons : dans l'étude locale (c'est-à-dire en se plaçant dans un voisinage du point étudié), en utilisant directement la définition de l'existence du nombre dérivé à l'aide de limites.
f (x0) = f1 (x0) + if2 (x0). On dit qu'une fonction f est dérivable sur un intervalle I lorsque f est dérivable en tout point de I. On note f la fonction dérivée de f qui à tout x ∈I associe f (x). Si g ne s'annule pas sur I, f g est aussi dérivable sur I et ( f g ) = f g − fg g2 .
Une fonction f:I→R f : I → R est donc dérivable en a si et seulement s'il existe α∈R α ∈ R et une fonction ε définie dans un intervalle J ouvert contenant 0 , vérifiant limh→0ε(h)=0 lim h → 0 ε ( h ) = 0 tels que ∀h∈J, f(a+h)=f(a)+αh+hε(h). ∀ h ∈ J , f ( a + h ) = f ( a ) + α h + h ε ( h ) .
On dit qu'une fonction est dérivable en 𝑥 = 𝑥 si ces limites existent. Si seule la limite à gauche ou à droite existe, alors on dit que la fonction est dérivable en 𝑥 = 𝑥 à gauche ou à droite respectivement.
Une fonction n'est pas dérivable en un réel a de son domaine si notamment la dérivée à gauche en ce point est différente de la dérivée à droite en ce même point.
si la dérivée n-i`eme, notée f(n), est continue, alors on dit que f est de classe Cn. (5) Si f est de classe Cn pour tout n ∈ N, alors f est infiniment dérivable, on dit que f est de classe C∞.
Si f est dérivable sur I et si x0∈I x 0 ∈ I n'est pas une borne de I alors f admet un extremum local en x0 si et seulement si x0 est un point critique et f′ change de signe autour de x0 . Si f est de classe C2 sur I intervalle ouvert, si x0 est un point critique de f et si f′′(x0)>0 f ″ ( x 0 ) > 0 (resp.
D'après le théorème des fonctions réciproques, la fonction est dérivable en tout point image d'un tel que. Mais on a : f ′ ( x ) = 0 ⇔ x = 0 , donc est dérivable en tout point autre que. Donc est dérivable sur. Représentation graphique de et de dans un repère orthonormé.
Se dit d'une fonction qui a une dérivée. (On distingue, selon les cas, les fonctions dérivables à droite ou à gauche, dérivables sur un intervalle ouvert ou fermé, dérivables n fois ou indéfiniment dérivables.)
Soit f : [a, b] → R une fonction. (1) Soit x0 ∈]a, b[. Alors f est dérivable en x0 si et seulement si f est dérivable `a droite et `a gauche en x0 et fg(x0) = fd(x0). (2) f est dérivable en a si et seulement si f est dérivable `a droite en a.
Si une fonction f est définie, continue et strictement monotone sur un intervalle [ a ; b ] [a; b] [a;b] alors, pour tout réel k compris entre f ( a ) f(a) f(a) et f ( b ) f(b) f(b), l'équation f ( x ) = k f(x)=k f(x)=k a une unique solution dans l'intervalle [ a ; b ] [a; b] [a;b].
- Limites à l'infini
Lorsque la variable x prend des valeurs très grandes (positivement ou négativement), on dit que x tend vers plus ou moins l'infini. Dans ce cas, on distingue les cas où f ( x ) f(x) f(x) se rapproche d'une valeur finie et ceux où f ( x ) f(x) f(x) s'éloigne vers l'infini.
fonction de classe C-infini. Une fonction définie sur un domaine I est dite de classe-infini sur I si elle est infiniment dérivable sur ce domaine. La plupart des fonctions usuelles sont de classe C-infini.
La fonction valeur absolue n'est pas dérivable en 0.
C'est une forme indéterminée comme "infini/infini" ou "infini - infini" ou "0/0" ou encore "1^(infini)".
∈ DN qui tend vers a (dans Rn) la suite (f(xm))m∈N tend vers l (dans Rp). Comme pour une fonction d'une variable réelle, cette propriété sert en général à montrer que l n'est pas la limite de f en a. C'est en particulier très utile pour montrer que f n'admet en fait aucune limite en a. f(x, y) = xy x2 + y2 .
On considère la fonction f définie sur R par f(x) = x sin x. donc f(xn) tend vers +∞. donc f(yn) tend vers 0. Par un raisonnement semblable à celui de l'exercice précédent, on en déduit que la fonction x ↦→ cos (1 x ) n'admet pas de limite en 0.
Une fonction constante de la forme 𝑓 de 𝑥 égale 𝑎 sera positive, négative ou égale à zéro. Si notre valeur de 𝑎 est positive, la fonction sera positive. Si 𝑎 est négatif, elle sera négative.
Si n=p=1 n = p = 1 , une application linéaire de R dans R est simplement une homothétie et il existe donc un réel c tel que L(h)=ch L ( h ) = c h . Ainsi f est différentiable en a si et seulement s'il existe un réel c tel que f(a+h)=f(a)+c⋅h+o(h). f ( a + h ) = f ( a ) + c ⋅ h + o ( h ) .
Une application f : A → N admet une limite en p si (et seulement si) pour tout réel ε > 0 il existe un réel δ > 0 tel que pour tous x, y dans A ∩ B(p ; δ), on ait d(f(x) ; f(y)) < ε. (Ce théorème se généralise au cas où M est seulement un espace topologique, en remplaçant les boules B(p ; δ) par des voisinages de p.)
Limite à l'infini. Définition (limite infinie à l'infini) Soit une fonction f définie sur \mathcal{D}_{f} telle qu'il existe un réel a pour lequel [a\:;+\infty[ est inclus dans \mathcal{D}_{f}. On dit que f est définie au voisinage de +\infty.
Définition 2.1 Soit f : R2 → R une fonction réelle de deux variables réelles, (a, b) un point de R2 et l ∈ R. Alors, f(x, y) a pour limite l quand (x, y) tend vers (a, b) si pour tout intervalle ouvert I contenant l, il existe un disque ouvert D contenant (a, b) tel que l'image de D \ (a, b) par f est contenu dans I.
À chaque point où f est différentiable, on peut définir un vecteur ; la famille de ces vecteurs forme un champ de vecteurs. Ce champ s'appelle aussi gradient de la fonction f et se note. des points de E où f est différentiable, et à valeurs dans E.
Etudier le signe de f'(x) sur l'intervalle I
On sait que si f'(x) est supérieure ou égale 0, alors la la fonction f est croissante sur I. A l'inverse, si f'(x) est inférieure ou égale à 0, alors f est décroissante sur I.