Un endomorphisme d'un espace de dimension n est nilpotent si et seulement si son polynôme caractéristique est égal à Xn. En effet, le polynôme caractéristique est unitaire, de degré n et a les mêmes facteurs premiers que le polynôme minimal.
On dit qu'une matrice carrée A est nilpotente s'il existe un entier naturel p tel que la matrice Ap soit nulle. L'indice de nilpotence est alors le plus petit p. et 0 l'endomorphisme nul.
Une matrice nilpotente n'est pas inversible. En effet, soit M une matrice nilpotente, d'indice p. On a alors Mp = 0 et Mp−1 = 0. Supposons M inversible alors Mp−1 = M−1.Mp = 0 c'est absurde.
une matrice est inversible si et seulement si son determinant est non nul ! Bonjour. Si A est bijective, on a : 1=detI=det(AA−1)=det(A)det(A−1), et par conséquent, detA est non nul. La réciproque est vraie, si le déterminant de A est non nul, alors A est inversible.
Utiliser la réduction linéaire par rangées pour trouver une matrice inverse. Accolez la matrice identité à votre matrice. Inscrivez sur votre feuille la matrice de départ M sans l'accolade de droite, tirez un trait vertical à droite de celle-ci, inscrivez la matrice identité et fermez l'accolade.
Ainsi 0 est la seule valeur propre possible de A. Comme 0 = det(Ak) = det(A)k, A n'est pas inversible et 0 est bien valeur propre. Finalement {0} est le spectre d'une matrice nilpotente.
– Si N est une matrice nilpotente et diagonalisable, alors N est semblable `a la matrice nulle, donc est nulle. Si N est nilpotente d'ordre p, etN = I + tN + t2 2!
Une matrice idempotente est une matrice (carrée mais pas nécessairement symétrique) telle que AA=A. Également A'A'=A=A' et A'A=A=A'. L'addition de matrices se fait élément par élément.
Dans un magma (M, •), l'élément neutre e ou l'élément absorbant a, s'il existe, est un élément idempotent. En effet, e • e = e et a • a = a. Dans tout magma associatif fini (E, •) non vide, il existe un élément idempotent.
En algèbre linéaire, une matrice involutive est une matrice carrée qui est égale à sa propre matrice inverse, c'est-à-dire telle que M-1=M. On a donc M2=I (matrice identité).
En algèbre linéaire et multilinéaire, une matrice symétrique est une matrice carrée qui est égale à sa propre transposée, c'est-à-dire telle que ai,j = aj,i pour tous i et j compris entre 1 et n, où les ai,j sont les coefficients de la matrice et n est son ordre.
Un endomorphisme u qui n'a qu'un nombre fini de valeurs propres (ce qui est toujours le cas en dimension finie) est diagonalisable si et seulement s'il est annulé par un polynôme scindé et à racines simples.
Pour démontrer qu'une matrice A est diagonalisable, la méthode la plus classique consiste à calculer le polynôme caractéristique χA et à le factoriser pour déterminer les valeurs propres de A . Si χA n'est pas scindé, A n'est pas diagonalisable.
Définition 5 Le polynome minimal d'une matrice A est un polynôme M de degré minimal tel que M(A) = 0 et de coefficient dominant égal à 1. Un tel polynome divise tous les polynomes tels que P(A) = 0, il divise le polynome caractéristique de A et il a les mêmes racines que le polynome caractéristique.
Le polynôme caractéristique d'une matrice carrée A est det(A - λI) (c'est un polynôme en λ). ∣ ∣ ∣ ∣ a - λ b c d - λ ∣ ∣ ∣ ∣ = (a -λ)(d -λ)-cd = λ2 -(a +d)λ+ad -bc . Rappel. Les valeurs propre d'une matrice carrée sont les racines de son polynôme caractéristique.
La similitude est une relation d'équivalence. Deux matrices sont semblables si et seulement si elles représentent le même endomorphisme d'un espace vectoriel dans deux bases (éventuellement) différentes.
La matrice M est diagonalisable si et seulement si la somme des multiplicités géométriques est égale à la taille de M. Or chaque multiplicité géométrique est toujours inférieure ou égale à la multiplicité algébrique correspondante.
1. Une matrice A est diagonalisable si et seulement si la somme des dimensions des sous-espaces propres est égale à l'ordre de la matrice. 2. Si une matrice carrée A d'ordre n admet n valeurs propres différentes, alors A est diagonalisable.
Comment calculer les vecteurs propres d'une matrice ? Pour trouver/déterminer des vecteurs propres , prendre M une matrice carré d'ordre n et λi ses valeurs propres. Les vecteurs propres sont les solutions du système (M−λIn)→X=→0 ( M − λ I n ) X → = 0 → avec In la matrice identité.
Re : Diagonalisation de matrice 4*4
Donc c'est aussi det(B-xI). Les valeurs propres sont bien 1,1,-1,-1. Ensuite pour diagonaliser il faut trouver les vecteurs propres de 1, il faut résoudre Bv = 1v soit (B-1I)v = 0 (il y en a 2). Même chose pour -1: résoudre Bv = -1v soit (B+1I)v = 0, il y en a 2 aussi.
Si F = K on dit que f est une forme linéaire. Si F = E, f est appelée un endomorphisme. Pour montrer que f est une application linéaire, il suffit de vérifier que f(u + λv) = f(u) + λf(v) pour tous u, v ∈ E,λ ∈ K.
La matrice carrée nulle est non-inversible et diagonalisable. Elle est même diagonale. En revanche une matrice carrée est inversible si et seulement si elle n'admet pas 0 pour valeur propre.
Pour déterminer/trouver les valeurs propres d'une matrice, calculer les racines de son polynôme caractéristique. Exemple : La matrice 2x2 (d'ordre 2) M=[1243] M = [ 1 2 4 3 ] a pour polynôme caractéristique P(M)=x2−4x−5=(x+1)(x−5) P ( M ) = x 2 − 4 x − 5 = ( x + 1 ) ( x − 5 ) .
Définition. Un endomorphisme f de E est dit symétrique si : ∀(x, y) ∈ E2, 〈f(x),y〉 = 〈x, f(y)〉.
Une matrice scalaire est une matrice diagonale (à coefficients dans un anneau) dont tous les coefficients diagonaux sont égaux, c'est-à-dire de la forme λIn où λ est un scalaire et In la matrice identité d'ordre n.