Si f est une application linéaire de E dans F, et g une application linéaire de F dans G alors g ◦ f est une application linéaire de E dans G. Le noyau de f est l'ensemble des v ∈ E tels que f(v) = 0. C'est un sous-espace vectoriel de E noté Ker(f).
Pour montrer qu'une application f : E → F est linéaire, on peut utiliser la définition, ∀u, v ∈ E,∀λ ∈ K : f(u + v) = f(u) + f(v), f(λu) = λf(u) ou une variante équivalente : f(u + λv) = f(u) + λf(v), ou encore comparer au crit`ere de s.e.v. — différences ? f(λu + µv) = λf(u) + µf(v).
Si F = K on dit que f est une forme linéaire. Si F = E, f est appelée un endomorphisme. Pour montrer que f est une application linéaire, il suffit de vérifier que f(u + λv) = f(u) + λf(v) pour tous u, v ∈ E,λ ∈ K.
En algèbre linéaire, un sous-espace vectoriel d'un espace vectoriel E, est une partie non vide F, de E, stable par combinaisons linéaires. Cette stabilité s'exprime par : la somme de deux vecteurs de F appartient à F ; le produit d'un vecteur de F par un scalaire appartient à F.
Une application linéaire f ∈ L (E,F) est bijective si et seulement si M(f)ei,fj est inversible. De plus, M(f−1)fj ,ei = (M(f)ei,fj )−1 .
Une application f est dite injective ou est une injection si tout élément de son ensemble d'arrivée a au plus un antécédent par f, ce qui revient à dire que deux éléments distincts de son ensemble de départ ne peuvent pas avoir la même image par f.
Exercice 2 Soit f ∈ L(E) telle que f3 = f2 + f, montrer que E = kerf ⊕ Imf. −→ y = f (−→x) ∈ Imf ∩kerf, il s'agit de prouver que −→ y = −→ 0 . Ainsi −→ y = −→ 0 . est bien la somme d'un élément de kerf et d'un élément de Imf.
Propriétés des espaces vectoriels de dimension finie
Toute famille libre de E a au plus n vecteurs et toute famille génératrice en a au moins n. Pour qu'une famille d'exactement n vecteurs soit une base, il suffit qu'elle soit libre ou génératrice : elle est alors les deux.
Un espace vectoriel est une structure stable par combinaisons linéaires. Les espaces vectoriels (appelés ainsi pour les propriétés applicables à la géométrie vectorielle) sont l'outil de base de l'algèbre linéaire.
Le vecteur u = (x, y, z, t) appartient `a F si et seulement si Vect(v1,v2,u) = Vect(v1,v2). Appliquons la méthode précédente aux vecteurs v1,v2,u. Le vecteur u appartient `a Vect(v1,v2) si et seulement si la derni`ere colonne est nulle, autrement dit si z − y − x = 0 et t + 2y − 3x = 0.
Une fonction linéaire est une fonction qui, à tout nombre x, associe le nombre ax , où a étant un nombre quelconque donné. a est appelé le coefficient de la fonction linéaire. On notera cette fonction de manière équivalente : ou f : x → ax ou f(x) = ax.
Définition Si f : E → F est une application linéaire, son noyau, noté Kerf est l'ensemble des vecteurs de E que f annule : Kerf := {v ∈ E|f (v)=0}.
On dit que f est un homorphisme d'espaces vectoriels ou plus simplement une application linéaire si elle respecte les lois associées, c'est `a dire si: ∀ x, y ∈ E, f(x + y) = f(x) + f(y); ∀x ∈ E,∀λ ∈ K, f(λ · x) = λ · f(x).
application. On dit que u est linéaire ou que c'est un morphisme si et seulement si : ∀x, y ∈ E, ∀λ, µ ∈ R, u(λx + µy) = λu(x) + µu(y). Lorsque E = F, un morphisme de E dans lui même s'appelle un endomorphisme.
Réponses. Alors un Z-espace vectoriel, ça n'existe pas, car Z n'est pas un corps.
Définition Si f : E → F est une application linéaire, son noyau, noté Kerf est l'ensemble des vecteurs de E que f annule : Kerf := {v ∈ E|f (v)=0}. Le noyau de la projection p := (x,y,z) ↦→ (x,y,0) de R3 sur son plan horizontal est l'axe vertical défini par x = y = 0.
En mathématiques, une base d'un espace vectoriel V est une famille de vecteurs de V linéairement indépendants et dont tout vecteur de V est combinaison linéaire. En d'autres termes, une base de V est une famille libre de vecteurs de V qui engendre V.
Re : Base canonique R3
est un espace vectoriel de dimension 3, ses bases sont donc formées de 3 vecteurs et non pas de 2.
On se place dans R3. On considère les sous-espaces vectoriels F = 1(x,y,z) ∈ R3 | x+y+z = 0l et G = 1(x,y,z) ∈ R3 | x = 0l. F nG = R(0,1,-1). (1,1,1)=(x,y,-x-y)+(0,α,β) avec x, y, α, β réels.
Le problème va être d'arriver à prouver que deux vecteurs sont colinéaires : il suffira de « penser BASE » . . . Deux vecteurs forment une base du plan vectoriel si, et seulement si, ils NE sont PAS colinéaires.
En mathématiques, plus précisément en algèbre linéaire, certains espaces vectoriels possèdent une base qualifiée de canonique ; il s'agit d'une base qui se présente de manière naturelle d'après la manière dont l'espace vectoriel est présenté.
Une droite vectorielle est engendrée par chacun de ses éléments non nuls. En effet : Soit v un élément non nul de Du . Il existe donc un réel non nul α tel que v = α·u .
Pour démontrer que Imf et kerf sont des sous-espaces supplémentaires, il suffit de montrer que leur intersection est réduite au vecteur nul.
Le noyau de f , noté par Ker(f ), est l'ensemble des antécédents du vecteur 0 : Ker(f ) = {x | f (x) = 0} = {x | Ax = 0} = l'ensemble solutions du système Ax = 0 . {y (−1 1 ) | y ∈ R} = 〈 (−1 1 ) 〉. Donc une base est (−1 1 ) .
On a, f(e1) = (2,-1,5) = 2v1 -5v2, f(e2)=(-1,-1,-1) = -v1 +v2, f(e3) = (1,0,0) = v1 -v2 -v3. Donc, MC,B(f) = 2 -1 1 5 1 -1 0 0 -1 . Exercice 1-4 Soient c = (e1,e2,e3) la base canonique de R3.