Si la fonction f ( x , y ) admet des dérivées partielles (par rapport à et ) qui sont continues, et si l'on se fixe des réels et , il existe une solution et une seule de l'équation y ′ = f ( x , y ) , définie sur un intervalle contenant , qui vérifie u ( x 0 ) = y 0 .
Théorème (admis)
Pour tout réel k compris entre ƒ(a) et ƒ(b), il existe au moins un réel c appartenant à l'intervalle [a ; b] tel que ƒ(c) = k. Autrement dit, pour tout réel k compris entre ƒ(a) et ƒ(b), l'équation ƒ(x) = k admet au moins une solution dans l'intervalle [a ; b].
Si une fonction f est définie, continue et strictement monotone sur un intervalle [ a ; b ] [a; b] [a;b] alors, pour tout réel k compris entre f ( a ) f(a) f(a) et f ( b ) f(b) f(b), l'équation f ( x ) = k f(x)=k f(x)=k a une unique solution dans l'intervalle [ a ; b ] [a; b] [a;b].
On calcule le discriminant Δ = b2 – 4ac de la fonction polynôme f définie par f(x) = ax2 + bx + c. Étudier le signe du discriminant Δ. Si Δ < 0, alors cette équation n'admet pas de solutions réelles. Si Δ = 0, alors cette équation admet une solution unique .
Si k \notin J_i alors l'équation f\left(x\right) = k n'admet pas de solution sur I_i. Si k \in J_i alors d'après le corollaire du théorème des valeurs intermédiaires, l'équation f\left(x\right) = k admet une unique solution sur I_i.
Si tous les coefficients aij sont nuls, et si l'un au moins des bi est non nul, alors le système n'admet pas de solution : S = ∅. Si l'un des coefficients aij est non nul, on peut le choisir comme pivot.
Afin de valider la solution trouvée, il suffit de remplacer l'inconnue dans l'équation de départ par la solution trouvée. L'égalité est vérifiée ce qui confirme que la solution de l'équation est bel et bien x=58. x = 5 8 .
On considère la fonction f définie sur R par f(x) = x sin x. donc f(xn) tend vers +∞. donc f(yn) tend vers 0. Par un raisonnement semblable à celui de l'exercice précédent, on en déduit que la fonction x ↦→ cos (1 x ) n'admet pas de limite en 0.
Pour déterminer la solution de l'équation, il faut remplacer l'inconnue par chacune des valeurs proposées et voir celle pour laquelle l'égalité est vérifiée. Si la racine est la bonne alors nous obtiendrons la même valeur numérique dans chaque membre de l'équation.
Pour résoudre une équation du second degré de la forme ax^2+bx+c=0, on détermine les éventuelles racines du trinôme. Le nombre appelé discriminant du trinôme est particulièrement utile dans la recherche des solutions d'une équation du second degré.
On distingue alors trois cas : Si (d) et (d') sont parallèles et distinctes, le système (S) n'admet aucun couple solution. Si (d) et (d') sont sécantes, le système (S) admet une solution unique.
S'il existe une ligne du type 0=b′i 0 = b i ′ avec b′i non nul, alors le système n'admet pas de solutions. Si au contraire il n'y a pas de ligne 0=b′i 0 = b i ′ , alors le système admet toujours une ou une infinité de solutions.
Un maximum d'une fonction se trouve où la dérivée est nulle et la dérivée seconde est strictement négative. Un minimum d'une fonction se trouve où la dérivée est nulle et la dérivée seconde est strictement positive.
Une fonction ne peut posséder qu'une seule ordonnée à l'origine. Il peut parfois ne pas y en avoir, mais il ne peut jamais y en avoir plusieurs.
Maximum d'une fonction sur un intervalle
On dit qu'une fonction f admet un maximum M en x0 sur un intervalle I si et seulement si pour tout x qui appartient à I, on a M=f(x0), avec x0∈I, et (f(x)≤f(x0)=M.
Contrairement à une équation, une inéquation n'a pas de solution unique, mais un ensemble de valeurs qui valident l'inéquation. On exprime donc les valeurs qui vérifient l'inéquation à l'aide d'un ensemble-solution.
Étape 1 : Calcul du discriminant Δ = b² - 4ac. Si Δ < 0 : Pas de solution à l'équation ; Si Δ = 0 : Une seule solution S = -b/2a ; Si Δ > 0 : Deux solutions à l'équation S = {(-b-racine(Δ))/2a, (-b+racine(Δ))/2a}.
Une application f : A → N admet une limite en p si (et seulement si) pour tout réel ε > 0 il existe un réel δ > 0 tel que pour tous x, y dans A ∩ B(p ; δ), on ait d(f(x) ; f(y)) < ε. (Ce théorème se généralise au cas où M est seulement un espace topologique, en remplaçant les boules B(p ; δ) par des voisinages de p.)
Définition : Limite d'une fonction en un point. Si les limites à gauche et à droite d'une fonction 𝑓 ( 𝑥 ) en 𝑥 = 𝑎 existent toutes les deux et sont égales à une valeur 𝐿 ∈ ℝ , alors l i m → 𝑓 ( 𝑥 ) = 𝐿 .
A partir de la courbe représentative d'une fonction, on détermine sa limite en un point où elle n'est pas définie. Le fait qu'une fonction ne soit pas définie en un point ne signifie pas que la limite de la fonction en ce point n'existe pas !
La méthode du pivot consiste d'abord à amener le système à un système triangulaire, ceci uniquement par opérations élémentaires sur les lignes. On suppose que la première colonne n'est pas identiquement nulle (sinon l'inconnue x1 n'apparait pas!), ainsi quitte à permuter les lignes, on suppose que a11 = 0.