En terme de différentielle, on a la caractérisation suivante : Proposition : Soit f une fonction définie sur un ouvert U de Rn. R n . f est de classe C1 sur U si et seulement si f est différentiable sur U et si l'application x↦dfx x ↦ d f x est continue.
Une fonction numérique f dГune variable réelle définie sur un intervalle I est dite de classe 1 C si elle est dérivable sur cet intervalle et si sa dérivée 'f est continue sur cet intervalle. a) Si f et g sont deux fonctions de classe 1 C sur un intervalle I alors les fonctions f g et f g sont de classe 1 C sur I .
Définition 1.6 Soit f : R → C une fonction. On dit que f est de classe C1 par morceaux sur R lorsqu'elle est continue par morceaux sur chaque segment [a, b] de R avec a<b. Exemple 1.2 (a) Toute fonction f : R → R dérivable sur R est de classe C1 par morceaux sur R (Exer.).
Si f:[a,b]→C f : [ a , b ] → C est une fonction continue par morceaux à valeurs complexes, on définit son intégrale sur [a,b] par ∫baf=∫baRe(f)+i∫baIm.
si la dérivée n-i`eme, notée f(n), est continue, alors on dit que f est de classe Cn. (5) Si f est de classe Cn pour tout n ∈ N, alors f est infiniment dérivable, on dit que f est de classe C∞.
On dit que f est de classe C2 sur U si elle est de classe C1 et que toutes ses dérivées partielles sont de classe C1 sur U. Par récurrence, on dit que f est de classe Ck sur U si elle est de classe C1 et que toutes ses dérivées partielles sont de classe Ck−1 sur U. = ∂ ∂xj ( ∂f ∂xj ) si j = k.
fonction de classe C-infini. Une fonction définie sur un domaine I est dite de classe-infini sur I si elle est infiniment dérivable sur ce domaine. La plupart des fonctions usuelles sont de classe C-infini.
Exemple. Soit f une fonction de la variable réelle x définie par f ( x ) = − 5 x − 15 . La fonction est définie pour tous les x tels que est positif ou nul et seulement pour ceux-ci. La quantité est positive ou nulle si et seulement si − 5 x est supérieur ou égal à + 15 .
Pour montrer qu'une application est bien définie, il faut s'assurer que pour chaque antécédent x on définit bien une image unique y dans l'ensemble d'arrivée (d'où l'importance de l'ensemble d'arrivée).
fonction de classe Cn. Une fonction définie sur un intervalle I est dite de classe Cn sur I si elle est n fois dérivable sur ce domaine et si la dérivée n-ième y est continue. Voir aussi : Cours de géométrie, préparation au CAPES et à l'agrégation.
Une fonction f est continue par morceaux sur le segment [a, b] s'il existe une subdivision σ : a = a0 < … < an = b telle que les restrictions de f à chaque intervalle ouvert ]ai, ai + 1[ admettent un prolongement continu à l'intervalle fermé [ai, ai + 1].
Une application f : [a, b] → E est dite en escalier s'il existe une subdivision σ = (x0 = a, x1,...,xn−1,xn = b) de [a, b] telle que f soit constante sur chacun des intervalles ouverts ]xi−1,xi[ (1 ≤ i ≤ n).
Dérivabilité et continuité
La dérivabilité d'une fonction ne se cherche donc qu'en des points où la fonction est déjà continue. La réciproque de cette affirmation est fausse : il existe des fonctions continues en a mais non dérivables en ce point.
La classe de régularité d'une fonction indique jusqu'à quel ordre n la dérivée nième d'une fonction existe et si celle-ci est continue, indépendamment de la forme ou de l'allure de la fonction (monotonie, convexité, zéros, etc.).
On dit que f est indéfiniment dérivable si f est k-dérivable pour tout k. On dit que f est de classe Ck si f(k) existe et est continue.
Lorsque l'on définit une fonction, on l'écrit généralement sous la forme 𝑓 ∶ 𝑋 ⟶ 𝑌 . Cela signifie que pour tout élément 𝑥 ∈ 𝑋 , on associe par la fonction 𝑓 un élément 𝑦 ∈ 𝑌 . Nous écrivons cela comme 𝑓 ( 𝑥 ) = 𝑦 .
On appelle f fonction définie sur D , tout procédé de calcul, qui à chaque réel x , lui associe un réel unique noté f(x) .
Une suite géométrique est une suite telle que chaque terme se déduit du précédent par la multiplication par un réel constant (également appelé la raison de la suite). Pour montrer qu'une suite (Vn) est géométrique, on montre qu'il existe un réel q constant tel que, pour tout entier n, V_{n + 1} = q \times V_n.
Pour évaluer 𝑓 [ 𝑓 ( 𝑥 ) ] on utilise une fonction composée, qui peut aussi s'écrire ( 𝑓 ∘ 𝑓 ) ( 𝑥 ) . Pour évaluer 𝑓 [ 𝑓 ( 𝑥 ) ] en une valeur spécifique de 𝑥 , on évalue d'abord 𝑓 ( 𝑥 ) en cette valeur de 𝑥 . Puis on évalue 𝑓 ( 𝑥 ) encore une fois, cette fois en utilisant l'image obtenue précédemment comme argument.
Par conséquent, l'ensemble de définition de 𝑓 est l'ensemble des nombres réels, ℝ . Pour trouver l'ensemble de définition de la dérivée, nous devons considérer les points 𝑥 auxquels 𝑓 ′ ( 𝑥 ) = 1 3 √ 𝑥 n'est pas définie. Le seul point où elle n'est pas définie est lorsque le dénominateur est égal à zéro.
domf={x∈R|f(x)∈R}. Restrictions pour déterminer le domaine d'une fonction algébrique : Si la formule contient un dénominateur, celui-ci ne doit pas être nul. Ainsi, si f est une fraction algébrique P(x)Q(x), alors domf={x∈R|Q(x)≠0}.
Pour montrer que la fonction f est de classe C1 sur un intervalle [a, b] de R (avec un problème en a), il suffit de montrer successivement que : - f est continue sur ]a, b], - f est continue en a à droite, - f est de classe C1 sur ]a, b], - f' admet une limite finie en a à droite.
Il est impossible de prouver l'existence d'un ensemble infini sans la supposer. Plus exactement, il est possible de définir une théorie des ensembles parfaitement cohérente qui affirmerait que tous les ensembles seraient finis.
Le zéro est alors appelé sunya ce qui signifie le vide. Au XIIe siècle, le mathématicien indien Bhaskara parvient à établir que 1/0 = l'infini. Il démontre ainsi, la relation qui existe entre le vide et l'infini. Au IXe siècle, les Arabes emprunteront aux Indiens le zéro, le mot sunya devenant sifr.