Les angles supplémentaires sont des angles dont la somme des mesures est égale à 180°.
Si deux droites parallèles coupées par une sécantes forment deux angles correspondants, alors ces angles sont de même mesure. La réciproque à cette règle est également vraie : Si deux angles correspondants de même mesure sont définis par deux droites et une sécante, alors ces deux droites sont parallèles.
Qu'est ce qu'un angle? l'intersection de deux demi-droites. les demi-droites, les côtés de l'angle.
Angle nul : Angle qui mesure 0 degré. Angle aigu : Angle supérieur à 0 degré et inférieur à 90 degrés. Angle droit : Angle de 90 degrés. Angle obtus : Angle entre 90 et 180 degrés.
Deux angles formés par deux droites coupées par une sécante sont dits alternes-internes si : ils sont situés de part et d'autre de la sécante ; ils sont situés entre les deux droites ; ils ne sont pas adjacents.
La mesure d'un angle droit est de 90°. La mesure d'un angle obtus se situe entre 90° et 180°. La mesure d'un angle plat est de 180°. La mesure d'un angle rentrant se situe entre 180° et 360°.
Deux angles sont dits angles complémentaires lorsque leur somme fait 90 degrés. Les angles α et β sont des angles complémentaires adjacents, car la somme de leurs mesures fait 90 degrés. Deux angles adjacents complémentaires forment un angle droit de 90 degrés.
En géométrie, lorsque la mesure d'un angle est comprise entre 180 et 360 degrés, l'angle est dit angle rentrant.
Il existe quatre principaux types de triangles qui ont chacun des propriétés particulières : le triangle quelconque, le triangle isocèle, le triangle équilatéral et le triangle rectangle. Un triangle possède trois côtés, trois sommets et trois angles.
Un triangle équiangle est un triangle qui possède trois angles de même mesure. Puisque la somme des angles intérieurs d'un triangle doit être de 180∘ , les triangles équiangles possèdent tous trois angles de 60∘ (180∘÷3) 60 ∘ ( 180 ∘ ÷ 3 ) .
Angle dont la mesure en degrés est égale à 360.
ACUTANGLE, adj. Un triangle acutangle est celui dont les trois angles sont aigus.
Si deux droites sont parallèles alors les angles alternes-internes reposant sur ces droites sont égaux. Si deux angles alternes-internes sont égaux alors les droites sur lesquelles ils reposent sont parallèles.
On dit de deux angles qu'ils sont correspondant lorsque ces deux angles sont formés par deux droites et une autre droite qui est sécante aux deux premières droites. De plus, les angles doivent être situés du même côté sur chacune des deux droites.
Si vous considérez les deux angles du même côté que la ligne transversale, ils sont appelés angles intérieurs consécutifs. Si les lignes coupées par la transversale sont parallèles, les angles alternes-internes sont égaux.
Un angle se mesure habituellement en degrés (°) à l'aide d'un rapporteur d'angle. Un degré correspond à un trois-cent-soixantième (1360) de la circonférence d'un cercle. On note la mesure d'un angle à l'aide des symboles « m∠ », qui signifient « mesure de l'angle ». Il est aussi possible de mesurer un angle en radians.
Deux demi-droites [Ox) et [Oy) définissent deux angles : l'un, noté \widehat{x\mathrm{O}y}, est appelé angle saillant ; l'autre, noté \widehat{y\mathrm{O}x}, est appelé angle rentrant.
En mathématiques, un angle obtus est un angle saillant dont la mesure est strictement supérieure à celle de l'angle droit, autrement dit un angle dont la mesure en degrés est comprise entre 90° exclu et 180° (soit entre π/2 exclu et π radians ).
Définition : Un angle est l'ouverture formée par deux demi-droites de même origine. Notation : La demi-droite d'origine passant par est notée . Vocabulaire : Les demi-droites sont les côtés de l'angle. Leur origine est le sommet de l'angle.
Adjectif. (Biologie) Qui est arrondi, émoussé au lieu d'être anguleux ou pointu. (Géométrie) Qualifie un angle saillant plus grand, plus ouvert qu'un angle droit, c'est-à-dire, dont la mesure est comprise entre pi/2 et pi radians. Un hexagone régulier possède six angles obtus.
Dans le cas d'un triangle rectangle ABC rectangle en B, la tangente de l'angle A est égale à la longueur du côté opposé à l'angle A divisée par la longueur du côté adjacent à l'angle A, donc tan A = BC/BA.